Jensen's inequality for g-expectation:: part 1

被引:39
作者
Chen, ZJ [1 ]
Kulperger, R
Jiang, L
机构
[1] Shandong Univ, Dept Math, Jinan 250100, Peoples R China
[2] Univ Western Ontario, Dept Stat & Actuarial Sci, London, ON, Canada
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/j.crma.2003.09.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Briand et al. (Electron. Comm. Probab. 5 (2000) 101-117) gave a counterexample and proposition to show that given g, g-expectations usually do not satisfy Jensen's inequality for most of convex functions. This yields a natural question, under which conditions on g, do g-expectations satisfy Jensen's inequality for convex functions? In this paper, we shall deal with this question in the case that g is convex and give a necessary and sufficient condition on g under which Jensen's inequality holds for convex functions. (C) 2003 Academie des sciences. Published by Elsevier SAS. All rights reserved.
引用
收藏
页码:725 / 730
页数:6
相关论文
共 6 条
  • [1] A CONVERSE COMPARISON THEOREM FOR BSDES AND RELATED PROPERTIES OF g-EXPECTATION
    Briand, Philippe
    Coquet, Francois
    Hu, Ying
    Memin, Jean
    Peng, Shige
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2000, 5 : 101 - 117
  • [2] A general downcrossing inequality for g-martingales
    Chen, ZJ
    Peng, SG
    [J]. STATISTICS & PROBABILITY LETTERS, 2000, 46 (02) : 169 - 175
  • [3] ADAPTED SOLUTION OF A BACKWARD STOCHASTIC DIFFERENTIAL-EQUATION
    PARDOUX, E
    PENG, SG
    [J]. SYSTEMS & CONTROL LETTERS, 1990, 14 (01) : 55 - 61
  • [4] Peng S., 1997, Pitman research notes in mathematics series, V364, P141
  • [5] Peng SM, 2002, ACTA METALL SIN, V38, P119
  • [6] Yosida K., 1999, FUNCTIONAL ANAL