A CONVERSE COMPARISON THEOREM FOR BSDES AND RELATED PROPERTIES OF g-EXPECTATION

被引:106
作者
Briand, Philippe [1 ]
Coquet, Francois [1 ]
Hu, Ying [1 ]
Memin, Jean [1 ]
Peng, Shige [2 ]
机构
[1] Univ Rennes 1, IRMAR, F-35042 Rennes, France
[2] Shandong Univ, Dept Math, Jinan 250100, Peoples R China
来源
ELECTRONIC COMMUNICATIONS IN PROBABILITY | 2000年 / 5卷
关键词
backward stochastic differential equations; comparison theorem;
D O I
10.1214/ECP.v5-1025
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In [1], Z. CHEN proved that, if for each terminal condition xi, the solution of the BSDE associated to the standard parameter (xi,g(1)) is equal at time t = 0 to the solution of the BSDE associated to (xi, g(2)) then we must have g(1) g(2). This result yields a natural question: what happens in the case of an inequality in place of an equality? In this paper, we try to investigate this question and we prove some properties of "g-expectation", notion introduced by S. PENG in [8].
引用
收藏
页码:101 / 117
页数:17
相关论文
共 11 条
[1]  
[Anonymous], 1970, PRINCETON MATH SER
[2]   A property of backward stochastic differential equations [J].
Chen, ZJ .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (04) :483-488
[3]   Backward stochastic differential equations in finance [J].
El Karoui, N ;
Peng, S ;
Quenez, MC .
MATHEMATICAL FINANCE, 1997, 7 (01) :1-71
[4]  
Kunita H., 1984, Lecture Notes in Math., V1097, P143, DOI DOI 10.1007/BFB0099433
[5]  
PARDOUX E, 1992, LECT NOTES CONTR INF, V176, P200
[6]   ADAPTED SOLUTION OF A BACKWARD STOCHASTIC DIFFERENTIAL-EQUATION [J].
PARDOUX, E ;
PENG, SG .
SYSTEMS & CONTROL LETTERS, 1990, 14 (01) :55-61
[7]  
Peng S., 1999, PROBAB THEORY REL, V113, P23
[8]  
Peng S., 1997, Pitman research notes in mathematics series, V364, P141
[9]  
Peng S.G., 1991, STOCHASTICS, V37, P61
[10]   STOCHASTIC HAMILTON-JACOBI-BELLMAN EQUATIONS [J].
PENG, SG .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1992, 30 (02) :284-304