Notions of denseness

被引:13
作者
Kuperberg, Greg [1 ]
机构
[1] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
Density; saturation; packing; covering; dominance;
D O I
10.2140/gt.2000.4.277
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The notion of a completely saturated packing [4] is a sharper version of maximum density, and the analogous notion of a completely reduced covering is a sharper version of minimum density. We de fine two related notions: uniformly recurrent and weakly recurrent dense packings, and diffusively dominant packings. Every compact domain in Euclidean space has a uniformly recurrent dense packing. If the domain self-nests, such a packing is limit-equivalent to a completely saturated one. Diffusive dominance is yet sharper than complete saturation and leads to a better understanding of n-saturation.
引用
收藏
页码:277 / 292
页数:16
相关论文
共 12 条
[1]  
Barlow W., 1883, Nature, V29, P186, DOI [10.1038/029186a0, DOI 10.1038/029186A0]
[2]  
COHN H, 2000, THESIS HARVARD U
[3]   WHAT ARE ALL THE BEST SPHERE PACKINGS IN LOW DIMENSIONS [J].
CONWAY, JH ;
SLOANE, NJA .
DISCRETE & COMPUTATIONAL GEOMETRY, 1995, 13 (3-4) :383-403
[4]  
Groemer H., 1963, Math. Z., V81, P260, DOI DOI 10.1007/BF01111546
[5]  
Grunbaum B, 1987, TILINGS PATTERNS
[6]  
Hales Thomas C, MATHMG9811071
[7]  
Morse Marston, 1944, Duke Math. J., V11, P1
[8]   Kepler's conjecture confirmed [J].
Sloane, NJA .
NATURE, 1998, 395 (6701) :435-436
[9]  
Thurston William., 1997, 3 DIMENSIONAL GEOMET
[10]   Highly saturated packings and reduced coverings [J].
Toth, GF ;
Kuperberg, G ;
Kuperberg, W .
MONATSHEFTE FUR MATHEMATIK, 1998, 125 (02) :127-145