Native spliceosomes assemble with Pre-mRNA to form supraspliceosomes

被引:35
作者
Azubel, M
Habib, N
Sperling, R
Sperling, J [1 ]
机构
[1] Weizmann Inst Sci, Dept Organ Chem, IL-76100 Rehovot, Israel
[2] Hebrew Univ Jerusalem, Dept Genet, IL-91904 Jerusalem, Israel
关键词
supraspliceosome; RNA polymerase II; eukaryotic pre-mRNA; ribonucleoprotein;
D O I
10.1016/j.jmb.2005.11.078
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Regulation of eukaryotic gene expression is achieved at different levels, which require accurate coordination. Macromolecular assemblies that exist as pre-formed entities can account for such coordination. Processing of pre-mRNA represents one step in this cascade of regulatory events but, moreover, provides explanation for protein versatility. The cellular machine where splicing of pre-mRNA, as well as additional processing events, take place in vivo is termed the supraspliceosome. Here, we show that the supraspliceosome is composed of four active spliceosomes, termed native spliceosomes, connected to each other by the pre-mRNA. Cleavage of pre-mRNA shows that its integrity is essential for the stability of the supraspliceosome. Furthermore, supraspliceosomes can be reconstituted in vitro, from purified native spliceosomes by addition of synthetic pre-mRNAs, providing further support to the supraspliceosome as a preassembled biological complex. The internal setting of the native spliceosomes within the supraspliceosome is most suitable to enable the communication between these structures, which is crucial in order to achieve regulated splicing. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:955 / 966
页数:12
相关论文
共 42 条
[1]   THE STRUCTURAL AND FUNCTIONAL DIVERSITY OF DYSTROPHIN [J].
AHN, AH ;
KUNKEL, LM .
NATURE GENETICS, 1993, 3 (04) :283-291
[2]   Three-dimensional structure of the native spliceosome by cryo-electron microscopy [J].
Azubel, M ;
Wolf, SG ;
Sperling, J ;
Sperling, R .
MOLECULAR CELL, 2004, 15 (05) :833-839
[3]   PROTEIN-COMPONENTS SPECIFICALLY ASSOCIATED WITH PRESPLICEOSOME AND SPLICEOSOME COMPLEXES [J].
BENNETT, M ;
MICHAUD, S ;
KINGSTON, J ;
REED, R .
GENES & DEVELOPMENT, 1992, 6 (10) :1986-2000
[4]   Broad specificity of SR (serine/arginine) proteins in the regulation of alternative splicing of pre-messenger RNA [J].
Bourgeois, CF ;
Lejeune, F ;
Stévenin, J .
PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY, VOL 78, 2004, 78 :37-88
[5]   Allosteric cascade of spliceosome activation [J].
Brow, DA .
ANNUAL REVIEW OF GENETICS, 2002, 36 :333-360
[6]  
Burge CB, 1999, RNA WORLD, P525
[7]   Listening to silence and understanding nonsense: Exonic mutations that affect splicing [J].
Cartegni, L ;
Chew, SL ;
Krainer, AR .
NATURE REVIEWS GENETICS, 2002, 3 (04) :285-298
[8]   ACCURATE TRANSCRIPTION INITIATION BY RNA POLYMERASE-II IN A SOLUBLE EXTRACT FROM ISOLATED MAMMALIAN NUCLEI [J].
DIGNAM, JD ;
LEBOVITZ, RM ;
ROEDER, RG .
NUCLEIC ACIDS RESEARCH, 1983, 11 (05) :1475-1489
[9]   SITE SPECIFIC ENZYMATIC CLEAVAGE OF RNA [J].
DONISKELLER, H .
NUCLEIC ACIDS RESEARCH, 1979, 7 (01) :179-192
[10]   Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays [J].
Johnson, JM ;
Castle, J ;
Garrett-Engele, P ;
Kan, ZY ;
Loerch, PM ;
Armour, CD ;
Santos, R ;
Schadt, EE ;
Stoughton, R ;
Shoemaker, DD .
SCIENCE, 2003, 302 (5653) :2141-2144