Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals

被引:138
作者
Zhong, Tian [1 ]
Kindem, Jonathan M. [1 ]
Miyazono, Evan [1 ]
Faraon, Andrei [1 ]
机构
[1] CALTECH, TJ Watson Lab Appl Phys, Pasadena, CA 91125 USA
来源
NATURE COMMUNICATIONS | 2015年 / 6卷
基金
美国国家科学基金会;
关键词
QUANTUM; ENTANGLEMENT; EMISSION; PHOTON; QUBITS; ION;
D O I
10.1038/ncomms9206
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum light-matter interfaces connecting stationary qubits to photons will enable optical networks for quantum communications, precise global time keeping, photon switching and studies of fundamental physics. Rare-earth-ion-doped crystals are state-of-the-art materials for optical quantum memories and quantum transducers between optical photons, microwave photons and spin waves. Here we demonstrate coupling of an ensemble of neodymium rare-earth-ions to photonic nanocavities fabricated in the yttrium orthosilicate host crystal. Cavity quantum electrodynamics effects including Purcell enhancement (F = 42) and dipole-induced transparency are observed on the highly coherent I-4(9/2)-F-4(3/2) optical transition. Fluctuations in the cavity transmission due to statistical fine structure of the atomic density are measured, indicating operation at the quantum level. Coherent optical control of cavity-coupled rare-earth ions is performed via photon echoes. Long optical coherence times (T-2 similar to 100 mu s) and small inhomogeneous broadening are measured for the cavity-coupled rare-earth ions, thus demonstrating their potential for on-chip scalable quantum light-matter interfaces.
引用
收藏
页数:6
相关论文
共 36 条
[1]   Impedance-matched cavity quantum memory [J].
Afzelius, Mikael ;
Simon, Christoph .
PHYSICAL REVIEW A, 2010, 82 (02)
[2]   Diamond Nanophotonics [J].
Aharonovich, Igor ;
Neu, Elke .
ADVANCED OPTICAL MATERIALS, 2014, 2 (10) :911-928
[3]  
Andrews RW, 2014, NAT PHYS, V10, P321, DOI [10.1038/NPHYS2911, 10.1038/nphys2911]
[4]   Triangular nanobeam photonic cavities in single-crystal diamond [J].
Bayn, Igal ;
Meyler, Boris ;
Salzman, Joseph ;
Kalish, Rafi .
NEW JOURNAL OF PHYSICS, 2011, 13
[5]   Heralded entanglement between solid-state qubits separated by three metres [J].
Bernien, H. ;
Hensen, B. ;
Pfaff, W. ;
Koolstra, G. ;
Blok, M. S. ;
Robledo, L. ;
Taminiau, T. H. ;
Markham, M. ;
Twitchen, D. J. ;
Childress, L. ;
Hanson, R. .
NATURE, 2013, 497 (7447) :86-90
[6]  
Bussières F, 2014, NAT PHOTONICS, V8, DOI [10.1038/NPHOTON.2014.215, 10.1038/nphoton.2014.215]
[7]   All-Optical Switch and Transistor Gated by One Stored Photon [J].
Chen, Wenlan ;
Beck, Kristin M. ;
Buecker, Robert ;
Gullans, Michael ;
Lukin, Mikhail D. ;
Tanji-Suzuki, Haruka ;
Vuletic, Vladan .
SCIENCE, 2013, 341 (6147) :768-770
[8]   Quantum storage of photonic entanglement in a crystal [J].
Clausen, Christoph ;
Usmani, Imam ;
Bussieres, Felix ;
Sangouard, Nicolas ;
Afzelius, Mikael ;
de Riedmatten, Hugues ;
Gisin, Nicolas .
NATURE, 2011, 469 (7331) :508-U79
[9]   Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength [J].
De Greve, Kristiaan ;
Yu, Leo ;
McMahon, Peter L. ;
Pelc, Jason S. ;
Natarajan, Chandra M. ;
Kim, Na Young ;
Abe, Eisuke ;
Maier, Sebastian ;
Schneider, Christian ;
Kamp, Martin ;
Hoefling, Sven ;
Hadfield, Robert H. ;
Forchel, Alfred ;
Fejer, M. M. ;
Yamamoto, Yoshihisa .
NATURE, 2012, 491 (7424) :421-+
[10]   Controlling cavity reflectivity with a single quantum dot [J].
Englund, Dirk ;
Faraon, Andrei ;
Fushman, Ilya ;
Stoltz, Nick ;
Petroff, Pierre ;
Vuckovic, Jelena .
NATURE, 2007, 450 (7171) :857-861