Selection and dispersal in a multispecies oak hybrid zone

被引:118
作者
Dodd, RS
Afzal-Rafii, Z
机构
[1] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA
[2] Univ Aix Marseille 1, Fac Sci St Jerome, IMEP, F-13397 Marseille, France
关键词
climate; hybridization; introgression; pollen dispersal; Quercus wislizeni; red oaks;
D O I
10.1111/j.0014-3820.2004.tb01643.x
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The four western North American red oak species (Quercus wislizeni, Q. parvula, Q. agrifolia, and Q. kelloggii) are known to produce hybrid products in all interspecific combinations. However, it is unknown whether hybrids are transitory resulting from interspecific gene flow or whether they are maintained through extrinsic selection. Here, we examine cryptic hybrid structure in Q. wislizeni through a broad region including contact and isolation from three other western North American red oaks using amplified fragment length polymorphism molecular markers. All four species were simultaneously detected in the genetic background of individuals morphologically assigned to Q. wislizeni, although the contribution of Q. kelloggii was minor. In some cases, introgression was detected well outside the region of sympatry with one of the parental species. Molecular structure at the individual level indicated this was due to long-distance pollen dispersal and not to local extinction of parental species. Species admixture proportions were correlated with climatic variables and greater proportions of Q. agrifolia and Q. parvula were present in the genetic background of Q. wislizeni in sites with cooler and more humid summers, corresponding with habitat preferences of the parental species. Partial Mantel tests indicated that climate was more important than distance from pollen source in this association. Despite high levels of introgression, species integrity was maintained in some populations in close proximity to the other species, providing further support to environmental selection in determining population genetic structure. Thus, the contribution of species mixtures to population genetic structure varies across the landscape according to availability of pollen, but more importantly to varying environmental selection pressures that produce a complex pattern of hybrid and pure gene pools.
引用
收藏
页码:261 / 269
页数:9
相关论文
共 47 条
[11]  
DEPAMPHILIS CW, 1990, EVOLUTION, V44, P1295, DOI 10.1111/j.1558-5646.1990.tb05233.x
[12]   CHEMOSYSTEMATIC STUDY OF HYBRIDIZATION IN CALIFORNIAN LIVE OAK - ACORN STEROIDS [J].
DODD, RS ;
RAFII, ZA ;
BOJOVIC, S .
BIOCHEMICAL SYSTEMATICS AND ECOLOGY, 1993, 21 (04) :467-473
[13]  
DODD RS, 2002, OAK WOODLANDS OAKS C, P775
[14]  
Ducousso A., 1993, ANN SCIENC FOR VOL, V50, P91
[15]  
Dumolin-Lapègue S, 1999, EVOLUTION, V53, P1406, DOI 10.2307/2640887
[16]   FLOW OF MITOCHONDRIAL-DNA ACROSS A SPECIES BOUNDARY [J].
FERRIS, SD ;
SAGE, RD ;
HUANG, CM ;
NIELSEN, JT ;
RITTE, U ;
WILSON, AC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1983, 80 (08) :2290-2294
[17]  
Grant V., 1981, Plant speciation, DOI 10.7312/gran92318
[18]   ELECTROPHORETIC EVIDENCE OF RELATIONSHIPS AMONG QUERCUS (OAKS) OF EASTERN NORTH-AMERICA [J].
GUTTMAN, SI ;
WEIGHT, LA .
CANADIAN JOURNAL OF BOTANY-REVUE CANADIENNE DE BOTANIQUE, 1989, 67 (02) :339-351
[19]  
HARDIN JW, 1975, J ARNOLD ARBORETUM, V56, P336
[20]  
Harrison R.G., 1989, P111