Extending Bauer's corollary to fractional derivatives

被引:27
作者
Dreisigmeyer, DW [1 ]
Young, PM
机构
[1] Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA
[2] Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2004年 / 37卷 / 11期
基金
美国国家科学基金会;
关键词
D O I
10.1088/0305-4470/37/11/L01
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We comment on the method of Dreisigmeyer and Young (2003 J. Phys. A: Math. Gen. 36 8297) to model nonconservative systems with fractional derivatives. It was previously hoped that using fractional derivatives in an action would allow us to derive a single retarded equation of motion using a variational principle. It is proven that, under certain reasonable assumptions, the method of Dreisigmeyer and Young fails.
引用
收藏
页码:L117 / L121
页数:5
相关论文
共 7 条
[1]   VARIATIONAL PRINCIPLES FOR LINEAR INITIAL VALUE-PROBLEMS [J].
ARTHURS, AM ;
JONES, ME .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1976, 54 (03) :840-845
[2]   On dissipative systems and related variational principles [J].
Bateman, H .
PHYSICAL REVIEW, 1931, 38 (04) :815-819
[3]   Dissipative dynamical systems I [J].
Bauer, PS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1931, 17 :311-314
[4]   Nonconservative Lagrangian mechanics: a generalized function approach [J].
Dreisigmeyer, DW ;
Young, PM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (30) :8297-8310
[5]   Nonconservative Lagrangian and Hamiltonian mechanics [J].
Riewe, F .
PHYSICAL REVIEW E, 1996, 53 (02) :1890-1899
[6]   Mechanics with fractional derivatives [J].
Riewe, F .
PHYSICAL REVIEW E, 1997, 55 (03) :3581-3592
[7]  
Tonti E., 1971, ANN MAT PUR APPL, V95, P331