Picoheterotroph (Bacteria and Archaea) biomass distribution in the global ocean

被引:30
作者
Buitenhuis, E. T. [1 ,2 ]
Li, W. K. W. [3 ]
Lomas, M. W. [4 ]
Karl, D. M. [5 ]
Landry, M. R. [6 ]
Jacquet, S. [7 ]
机构
[1] Univ E Anglia, Tyndall Ctr Climate Change Res, Norwich NR4 7TJ, Norfolk, England
[2] Univ E Anglia, Sch Environm Sci, Norwich NR4 7TJ, Norfolk, England
[3] Bedford Inst Oceanog, Fisheries & Oceans Canada, Dartmouth, NS, Canada
[4] Bermuda Inst Ocean Sci, St Georges, Bermuda
[5] Univ Hawaii, Dept Oceanog, Honolulu, HI 96822 USA
[6] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA
[7] INRA, UMR CARRTEL, F-74200 Thonon Les Bains, France
关键词
NUCLEIC-ACID CONTENT; CENTRAL EQUATORIAL PACIFIC; ATLANTIC TIME-SERIES; NORTH-ATLANTIC; SARGASSO SEA; CARBON; RATES; PHYTOPLANKTON; DYNAMICS; PICOPHYTOPLANKTON;
D O I
10.5194/essd-4-101-2012
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We compiled a database of 39 766 data points consisting of flow cytometric and microscopical measurements of picoheterotroph abundance, including both Bacteria and Archaea. After gridding with 1 degrees spacing, the database covers 1.3% of the ocean surface. There are data covering all ocean basins and depths except the Southern Hemisphere below 350 m or from April until June. The average picoheterotroph biomass is 3.9 +/- 3.6 mu g Cl-1 with a 20-fold decrease between the surface and the deep sea. We estimate a total ocean inventory of about 1.3 x 10(29) picoheterotroph cells. Surprisingly, the abundance in the coastal regions is the same as at the same depths in the open ocean. Using an average of published open ocean measurements for the conversion from abundance to carbon biomass of 9.1 fg cell(-1), we calculate a picoheterotroph carbon inventory of about 1.2 Pg C. The main source of uncertainty in this inventory is the conversion factor from abundance to biomass. Picoheterotroph biomass is similar to 2 times higher in the tropics than in the polar oceans. doi:10.1594/PANGAEA.779142
引用
收藏
页码:101 / 106
页数:6
相关论文
共 35 条
[1]  
Azam F, 2007, NAT REV MICROBIOL, V5, P782, DOI 10.1038/nrmicro1747
[2]   Dynamics of picophytoplankton, ultraphytoplankton and bacteria in the central equatorial Pacific [J].
Binder, BJ ;
Chisholm, SW ;
Olson, RJ ;
Frankel, SL ;
Worden, AZ .
DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY, 1996, 43 (4-6) :907-931
[3]  
Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000
[4]  
Buck KR, 1996, AQUAT MICROB ECOL, V10, P283
[5]   MAREDAT: towards a world atlas of MARine Ecosystem DATa [J].
Buitenhuis, E. T. ;
Vogt, M. ;
Moriarty, R. ;
Bednarsek, N. ;
Doney, S. C. ;
Leblanc, K. ;
Le Quere, C. ;
Luo, Y. -W. ;
O'Brien, C. ;
O'Brien, T. ;
Peloquin, J. ;
Schiebel, R. ;
Swan, C. .
EARTH SYSTEM SCIENCE DATA, 2013, 5 (02) :227-239
[6]   Annual variability of phytoplankton and bacteria in the subtropical North Pacific Ocean at Station ALOHA during the 1991-1994 ENSO event [J].
Campbell, L ;
Liu, HB ;
Nolla, HA ;
Vaulot, D .
DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS, 1997, 44 (02) :167-&
[7]   Response of microbial community structure to environmental forcing in the Arabian Sea [J].
Campbell, L ;
Landry, MR ;
Constantinou, J ;
Nolla, HA ;
Brown, SL ;
Liu, H ;
Caron, DA .
DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY, 1998, 45 (10-11) :2301-2325
[8]   Estimation of bacterial respiration and growth efficiency in the Ross Sea, Antarctica [J].
Carlson, CA ;
Bates, NR ;
Ducklow, HW ;
Hansell, DA .
AQUATIC MICROBIAL ECOLOGY, 1999, 19 (03) :229-244
[9]   MAJOR ROLE OF BACTERIA IN BIOGEOCHEMICAL FLUXES IN THE OCEANS INTERIOR [J].
CHO, BC ;
AZAM, F .
NATURE, 1988, 332 (6163) :441-443
[10]   Phytoplankton population dynamics at the Bermuda Atlantic Time-series station in the Sargasso Sea [J].
DuRand, MD ;
Olson, RJ ;
Chisholm, SW .
DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY, 2001, 48 (8-9) :1983-2003