Picoheterotroph (Bacteria and Archaea) biomass distribution in the global ocean

被引:30
作者
Buitenhuis, E. T. [1 ,2 ]
Li, W. K. W. [3 ]
Lomas, M. W. [4 ]
Karl, D. M. [5 ]
Landry, M. R. [6 ]
Jacquet, S. [7 ]
机构
[1] Univ E Anglia, Tyndall Ctr Climate Change Res, Norwich NR4 7TJ, Norfolk, England
[2] Univ E Anglia, Sch Environm Sci, Norwich NR4 7TJ, Norfolk, England
[3] Bedford Inst Oceanog, Fisheries & Oceans Canada, Dartmouth, NS, Canada
[4] Bermuda Inst Ocean Sci, St Georges, Bermuda
[5] Univ Hawaii, Dept Oceanog, Honolulu, HI 96822 USA
[6] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA
[7] INRA, UMR CARRTEL, F-74200 Thonon Les Bains, France
关键词
NUCLEIC-ACID CONTENT; CENTRAL EQUATORIAL PACIFIC; ATLANTIC TIME-SERIES; NORTH-ATLANTIC; SARGASSO SEA; CARBON; RATES; PHYTOPLANKTON; DYNAMICS; PICOPHYTOPLANKTON;
D O I
10.5194/essd-4-101-2012
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We compiled a database of 39 766 data points consisting of flow cytometric and microscopical measurements of picoheterotroph abundance, including both Bacteria and Archaea. After gridding with 1 degrees spacing, the database covers 1.3% of the ocean surface. There are data covering all ocean basins and depths except the Southern Hemisphere below 350 m or from April until June. The average picoheterotroph biomass is 3.9 +/- 3.6 mu g Cl-1 with a 20-fold decrease between the surface and the deep sea. We estimate a total ocean inventory of about 1.3 x 10(29) picoheterotroph cells. Surprisingly, the abundance in the coastal regions is the same as at the same depths in the open ocean. Using an average of published open ocean measurements for the conversion from abundance to carbon biomass of 9.1 fg cell(-1), we calculate a picoheterotroph carbon inventory of about 1.2 Pg C. The main source of uncertainty in this inventory is the conversion factor from abundance to biomass. Picoheterotroph biomass is similar to 2 times higher in the tropics than in the polar oceans. doi:10.1594/PANGAEA.779142
引用
收藏
页码:101 / 106
页数:6
相关论文
共 35 条
[11]  
Fukuda R, 1998, APPL ENVIRON MICROB, V64, P3352
[12]  
Gasol JM, 1999, APPL ENVIRON MICROB, V65, P4475
[13]  
Glover D.M., 2011, MODELING METHODS MAR
[14]   Elemental C, N, and P cell content of individual bacteria collected at the Bermuda Atlantic Time-Series Study (BATS) site [J].
Gundersen, K ;
Heldal, M ;
Norland, S ;
Purdie, DA ;
Knap, AH .
LIMNOLOGY AND OCEANOGRAPHY, 2002, 47 (05) :1525-1530
[15]   Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean [J].
Herndl, GJ ;
Reinthaler, T ;
Teira, E ;
van Aken, H ;
Veth, C ;
Pernthaler, A ;
Pernthaler, J .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2005, 71 (05) :2303-2309
[16]  
Jacquet S., 2010, J OCEANOGR RES DATA, V3, P47
[17]   Mechanisms and rates of bacterial colonization of sinking aggregates [J].
Kiorboe, T ;
Grossart, HP ;
Ploug, H ;
Tang, K .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2002, 68 (08) :3996-4006
[18]   Abundances and distributions of picoplankton populations in the central equatorial Pacific from 12 degrees N to 12 degrees S, 140 degrees W [J].
Landry, MR ;
Kirshtein, J ;
Constantinou, J .
DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY, 1996, 43 (4-6) :871-890
[19]   Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models [J].
Le Quéré, C ;
Harrison, SP ;
Prentice, IC ;
Buitenhuis, ET ;
Aumont, O ;
Bopp, L ;
Claustre, H ;
Da Cunha, LC ;
Geider, R ;
Giraud, X ;
Klaas, C ;
Kohfeld, KE ;
Legendre, L ;
Manizza, M ;
Platt, T ;
Rivkin, RB ;
Sathyendranath, S ;
Uitz, J ;
Watson, AJ ;
Wolf-Gladrow, D .
GLOBAL CHANGE BIOLOGY, 2005, 11 (11) :2016-2040
[20]   RELATIONSHIPS BETWEEN BIOVOLUME AND BIOMASS OF NATURALLY DERIVED MARINE BACTERIOPLANKTON [J].
LEE, S ;
FUHRMAN, JA .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1987, 53 (06) :1298-1303