Intracellular chemical gradients: morphing principle in bacteria

被引:1
作者
Endres, Robert G. [1 ,2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Div Mol Biosci, London SW7 2AZ, England
[2] Univ London Imperial Coll Sci Technol & Med, Ctr Syst Biol & Bioinformat, London SW7 2AZ, England
来源
BMC BIOPHYSICS | 2012年 / 5卷
关键词
ESCHERICHIA-COLI; POSITIONAL INFORMATION; SPATIAL GRADIENTS; CELL LENGTH; ACCURACY; DIVISION; PROTEINS;
D O I
10.1186/2046-1682-5-18
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Advances in computational biology allow systematic investigations to ascertain whether internal chemical gradients can be maintained in bacteria - an open question at the resolution limit of fluorescence microscopy. While it was previously believed that the small bacterial cell size and fast diffusion in the cytoplasm effectively remove any such gradient, a new computational study published in BMC Biophysics supports the emerging view that gradients can exist. The study arose from the recent observation that phosphorylated CtrA forms a gradient prior to cell division in Caulobacter crescentus, a bacterium known for its complicated cell cycle. Tropini et al. (2012) postulate that such gradients can provide an internal chemical compass, directing protein localization, cell division and cell development. More specifically, they describe biochemical and physical constraints on the formation of such gradients and explore a number of existing bacterial cell morphologies. These chemical gradients may limit in vitro analyses, and may ensure timing control and robustness to fluctuations during critical stages in cell development.
引用
收藏
页数:3
相关论文
共 29 条
[11]   Polar Chemoreceptor Clustering by Coupled Trimers of Dimers [J].
Endres, Robert G. .
BIOPHYSICAL JOURNAL, 2009, 96 (02) :453-463
[12]  
Fantes PA., 1981, The Cell Cycle, P11
[13]   Highly Canalized MinD Transfer and MinE Sequestration Explain the Origin of Robust MinCDE-Protein Dynamics [J].
Halatek, Jacob ;
Frey, Erwin .
CELL REPORTS, 2012, 1 (06) :741-752
[14]   How to build a robust intracellular concentration gradient [J].
Howard, Martin .
TRENDS IN CELL BIOLOGY, 2012, 22 (06) :311-317
[15]   Getting the Measure of Positional Information [J].
Jaeger, Johannes ;
Martinez-Arias, Alfonso .
PLOS BIOLOGY, 2009, 7 (03) :444-447
[16]   Division accuracy in a stochastic model of Min oscillations in Escherichia coli [J].
Kerr, RA ;
Levine, H ;
Sejnowski, TJ ;
Rappel, WJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (02) :347-352
[17]   Mobility of Cytoplasmic, Membrane, and DNA-Binding Proteins in Escherichia coli [J].
Kumar, Mohit ;
Mommer, Mario S. ;
Sourjik, Victor .
BIOPHYSICAL JOURNAL, 2010, 98 (04) :552-559
[18]   Simulated diffusion of phosphorylated CheY through the cytoplasm of Escherichia coli [J].
Lipkow, K ;
Andrews, SS ;
Bray, D .
JOURNAL OF BACTERIOLOGY, 2005, 187 (01) :45-53
[19]   Polar gradients of the DYRK-family kinase Pom1 couple cell length with the cell cycle [J].
Martin, Sophie G. ;
Berthelot-Grosjean, Martine .
NATURE, 2009, 459 (7248) :852-U7
[20]   A spatial gradient coordinates cell size and mitotic entry in fission yeast [J].
Moseley, James B. ;
Mayeux, Adeline ;
Paoletti, Anne ;
Nurse, Paul .
NATURE, 2009, 459 (7248) :857-U8