Preventing Interfacial Recombination in Colloidal Quantum Dot Solar Cells by Doping the Metal Oxide

被引:125
作者
Ehrler, Bruno [1 ]
Musselman, Kevin P. [1 ]
Boehm, Marcus L. [1 ]
Morgenstern, Frederik S. F. [1 ]
Vaynzof, Yana [1 ]
Walker, Brian J. [1 ]
MacManus-Driscoll, Judith L. [2 ]
Greenham, Neil C. [1 ]
机构
[1] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
[2] Univ Cambridge, Dept Mat Sci, Cambridge CB2 3QZ, England
关键词
metal oxide; colloidal quantum dot solar cells; intragap states; solar cell; recombination; ELECTRON-TRANSFER; FILMS; ORIGIN; ZNO;
D O I
10.1021/nn400656n
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recent research has pushed the efficiency of colloidal quantum dot solar cells toward a level that spurs commercial interest. Quantum dot/metal oxide bilayers form the most efficient colloidal quantum dot solar cells, and most studies have advanced the understanding of the quantum dot component. We study the interfacial recombination process in depleted heterojunction colloidal quantum dot (QD) solar cells formed with ZnO as the oxide by varying (i) the carrier concentration of the ZnO layer and (ii) the density of intragap recombination sites in the QD layer. We find that the open-circuit voltage and efficiency of PbS QD/ZnO devices can be improved by 50% upon doping of the ZnO with nitrogen to reduce its carrier concentration. In contrast, doping the ZnO did not change the performance of PbSe QD/ZnO solar cells. We use X-ray photoemission spectroscopy, ultraviolet photoemission spectroscopy, transient photovoltage decay measurements, transient absorption spectroscopy, and intensity-dependent photocurrent measurements to investigate the origin of this effect. We find a significant density of intragap states within the band gap of the PbS quantum dots. These states facilitate recombination at the PbS/ZnO interface, which can be suppressed by reducing the density of occupied states in the ZnO. For the PbSe QD/ZnO solar cells, where fewer intragap states are observed in the quantum dots, the interfacial recombination channel does not limit device performance. Our study sheds light on the mechanisms of interfacial recombination in colloidal quantum dot solar cells and emphasizes the influence of quantum dot intragap states and metal oxide properties on this loss pathway.
引用
收藏
页码:4210 / 4220
页数:11
相关论文
共 53 条
[1]   Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics [J].
Barkhouse, D. Aaron R. ;
Debnath, Ratan ;
Kramer, Illan J. ;
Zhitomirsky, David ;
Pattantyus-Abraham, Andras G. ;
Levina, Larissa ;
Etgar, Lioz ;
Graetzel, Michael ;
Sargent, Edward H. .
ADVANCED MATERIALS, 2011, 23 (28) :3134-+
[2]   Color tunable light-emitting diodes based on copper doped semiconducting nanocrystals [J].
Bhaumik, Saikat ;
Ghosh, Batu ;
Pal, Amlan J. .
APPLIED PHYSICS LETTERS, 2011, 99 (08)
[3]   Reproducible growth of p-type ZnO:N using a modified atomic layer deposition process combined with dark annealing [J].
Dunlop, L. ;
Kursumovic, A. ;
MacManus-Driscoll, J. L. .
APPLIED PHYSICS LETTERS, 2008, 93 (17)
[4]   In situ measurement of exciton energy in hybrid singlet-fission solar cells [J].
Ehrler, Bruno ;
Walker, Brian J. ;
Boehm, Marcus L. ;
Wilson, Mark W. B. ;
Vaynzof, Yana ;
Friend, Richard H. ;
Greenham, Neil C. .
NATURE COMMUNICATIONS, 2012, 3
[5]   Singlet Exciton Fission-Sensitized Infrared Quantum Dot Solar Cells [J].
Ehrler, Bruno ;
Wilson, Mark W. B. ;
Rao, Akshay ;
Friend, Richard H. ;
Greenham, Neil C. .
NANO LETTERS, 2012, 12 (02) :1053-1057
[6]   Quantum Dot Size Dependent J-V Characteristics in Heterojunction ZnO/PbS Quantum Dot Solar Cells [J].
Gao, Jianbo ;
Luther, Joseph M. ;
Semonin, Octavi E. ;
Ellingson, Randy J. ;
Nozik, Arthur J. ;
Beard, Matthew C. .
NANO LETTERS, 2011, 11 (03) :1002-1008
[7]   DOUBLE EXTRACTION OF UNIFORMLY GENERATED ELECTRON-HOLE PAIRS FROM INSULATORS WITH NONINJECTING CONTACTS [J].
GOODMAN, AM ;
ROSE, A .
JOURNAL OF APPLIED PHYSICS, 1971, 42 (07) :2823-&
[8]   Semiconductor Nanocrystal Quantum Dots as Solar Cell Components and Photosensitizers: Material, Charge Transfer, and Separation Aspects of Some Device Topologies [J].
Hetsch, Frederik ;
Xu, Xueqing ;
Wang, Hongkang ;
Kershaw, Stephen V. ;
Rogach, Andrey L. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (15) :1879-1887
[9]   Control of Electron Transfer from Lead-Salt Nanocrystals to TiO2 [J].
Hyun, Byung-Ryool ;
Bartnik, A. C. ;
Sun, Liangfeng ;
Hanrath, Tobias ;
Wise, F. W. .
NANO LETTERS, 2011, 11 (05) :2126-2132
[10]  
Ip AH, 2012, NAT NANOTECHNOL, V7, P577, DOI [10.1038/NNANO.2012.127, 10.1038/nnano.2012.127]