The synthesis of 22-carbon fatty acids, with their first double bond at position 4, requires the participation of enzymes in both peroxisomes and the endoplasmic reticulum as well as the controlled movement of fatty acids between these two cellular compartments. It has been observed that there is generally an inverse relationship between rates of peroxisomal P-oxidation vs those for the microsomal esterification of fatty acids into 1-acyl-sn-glycero-3-phosphocholine. With a variety of different substrates it was found that when a fatty acid is produced in peroxisomes, with its first double bond at position 4, its preferred metabolic fate is to move to microsomes for esterification rather than to serve as a substrate for continued degradation. The required movement, and the associated reactions, in peroxisomes and microsomes is not restricted to the synthesis of 4,7,10,13,16-docosapentaenoic acid and 4,7,10,13,16,19-docosahexaenoic acid. When microsomes and peroxisomes were incubated with NAD, NADPH and malonyl-CoA it was found that 6,9,12-octadecatrienoic acid was metabolized to linoleate. Collectively our findings suggest that there may be considerably more recycling of fatty acids between peroxisomes and the endoplasmic reticulum than was previously recognized.