Stabilization of a brain-computer interface via the alignment of low-dimensional spaces of neural activity

被引:113
作者
Degenhart, Alan D. [1 ,2 ,3 ,4 ,5 ]
Bishop, William E. [3 ,6 ,7 ]
Oby, Emily R. [2 ,3 ,4 ,5 ,8 ]
Tyler-Kabara, Elizabeth C. [2 ,9 ,10 ,11 ]
Chase, Steven M. [3 ,12 ,13 ]
Batista, Aaron P. [2 ,3 ,4 ,5 ]
Yu, Byron M. [1 ,3 ,12 ,13 ]
机构
[1] Carnegie Mellon Univ, Dept Elect & Comp Engn, Pittsburgh, PA 15213 USA
[2] Univ Pittsburgh, Dept Bioengn, Pittsburgh, PA USA
[3] Ctr Neural Basis Cognit, Pittsburgh, PA 15213 USA
[4] Univ Pittsburgh, Brain Inst, Pittsburgh, PA USA
[5] Univ Pittsburgh, Syst Neurosci Ctr, Pittsburgh, PA USA
[6] Carnegie Mellon Univ, Dept Machine Learning, Pittsburgh, PA 15213 USA
[7] Howard Hughes Med Inst, Janelia Res Campus, Ashburn, VA USA
[8] Univ Pittsburgh, Sch Med, Dept Neurobiol, Pittsburgh, PA USA
[9] Univ Pittsburgh, Dept Neurol Surg, Pittsburgh, PA 15260 USA
[10] Univ Pittsburgh, Dept Phys Med & Rehabil, Pittsburgh, PA USA
[11] Univ Pittsburgh, McGowan Inst Regenerat Med, Pittsburgh, PA USA
[12] Carnegie Mellon Univ, Neurosci Inst, Pittsburgh, PA 15213 USA
[13] Carnegie Mellon Univ, Dept Biomed Engn, Pittsburgh, PA 15213 USA
关键词
MACHINE INTERFACES; STABILITY; MOVEMENT; PERFORMANCE; TETRAPLEGIA; POTENTIALS; REDUCTION; RESPONSES; NEURONS; MODEL;
D O I
10.1038/s41551-020-0542-9
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The instability of neural recordings can render clinical brain-computer interfaces (BCIs) uncontrollable. Here, we show that the alignment of low-dimensional neural manifolds (low-dimensional spaces that describe specific correlation patterns between neurons) can be used to stabilize neural activity, thereby maintaining BCI performance in the presence of recording instabilities. We evaluated the stabilizer with non-human primates during online cursor control via intracortical BCIs in the presence of severe and abrupt recording instabilities. The stabilized BCIs recovered proficient control under different instability conditions and across multiple days. The stabilizer does not require knowledge of user intent and can outperform supervised recalibration. It stabilized BCIs even when neural activity contained little information about the direction of cursor movement. The stabilizer may be applicable to other neural interfaces and may improve the clinical viability of BCIs. Neural activity residing in a low-dimensional space that reflects specific correlation patterns among neurons can be used to maintain the performance of brain-computer interfaces in the presence of recording instabilities.
引用
收藏
页码:672 / 685
页数:14
相关论文
共 76 条
  • [1] Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration
    Ajiboye, A. Bolu
    Willett, Francis R.
    Young, Daniel R.
    Memberg, William D.
    Murphy, Brian A.
    Miller, Jonathan P.
    Walter, Benjamin L.
    Sweet, Jennifer A.
    Hoyen, Harry A.
    Keith, Michael W.
    Peckham, P. Hunter
    Simeral, John D.
    Donoghue, John P.
    Hochberg, Leigh R.
    Kirsch, Robert F.
    [J]. LANCET, 2017, 389 (10081) : 1821 - 1830
  • [2] [Anonymous], 2014, Advances in Neural Information Processing Systems
  • [3] Spontaneous Cortical Activity Reveals Hallmarks of an Optimal Internal Model of the Environment
    Berkes, Pietro
    Orban, Gergo
    Lengyel, Mate
    Fiser, Jozsef
    [J]. SCIENCE, 2011, 331 (6013) : 83 - 87
  • [4] Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays
    Biran, R
    Martin, DC
    Tresco, PA
    [J]. EXPERIMENTAL NEUROLOGY, 2005, 195 (01) : 115 - 126
  • [5] Bishop W. E, 2017, EXTRACTING STABLE RE
  • [6] Self-recalibrating classifiers for intracortical brain-computer interfaces
    Bishop, William
    Chestek, Cynthia C.
    Gilja, Vikash
    Nuyujukian, Paul
    Foster, Justin D.
    Ryu, Stephen I.
    Shenoy, Krishna V.
    Yu, Byron M.
    [J]. JOURNAL OF NEURAL ENGINEERING, 2014, 11 (02)
  • [7] Restoring cortical control of functional movement in a human with quadriplegia
    Bouton, Chad E.
    Shaikhouni, Ammar
    Annetta, Nicholas V.
    Bockbrader, Marcia A.
    Friedenberg, David A.
    Nielson, Dylan M.
    Sharma, Gaurav
    Sederberg, Per B.
    Glenn, Bradley C.
    Mysiw, W. Jerry
    Morgan, Austin G.
    Deogaonkar, Milind
    Rezai, Ali R.
    [J]. NATURE, 2016, 533 (7602) : 247 - +
  • [8] Learning to control a brain-machine interface for reaching and grasping by primates
    Carmena, JM
    Lebedev, MA
    Crist, RE
    O'Doherty, JE
    Santucci, DM
    Dimitrov, DF
    Patil, PG
    Henriquez, CS
    Nicolelis, MAL
    [J]. PLOS BIOLOGY, 2003, 1 (02) : 193 - 208
  • [9] Chase S. M., 2019, IEEE 7 INT WINT C BR, P1
  • [10] Bias, optimal linear estimation, and the differences between open-loop simulation and closed-loop performance of spiking-based brain-computer interface algorithms
    Chase, Steven M.
    Schwartz, Andrew B.
    Kass, Robert E.
    [J]. NEURAL NETWORKS, 2009, 22 (09) : 1203 - 1213