Dynamic thiolation-thioesterase structure of a non-ribosomal peptide synthetase

被引:132
作者
Frueh, Dominique P. [1 ]
Arthanari, Haribabu [1 ]
Koglin, Alexander [1 ]
Vosburg, David A. [1 ]
Bennett, Andrew E. [1 ]
Walsh, Christopher T. [1 ]
Wagner, Gerhard [1 ]
机构
[1] Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA
关键词
D O I
10.1038/nature07162
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Non-ribosomal peptide synthetases (NRPS) and polyketide synthases (PKS) produce numerous secondary metabolites with various therapeutic/antibiotic properties(1). Like fatty acid synthases (FAS), these enzymes are organized in modular assembly lines in which each module, made of conserved domains, incorporates a given monomer unit into the growing chain. Knowledge about domain or module interactions may enable reengineering of this assembly line enzymatic organization and open avenues for the design of new bioactive compounds with improved therapeutic properties. So far, little structural information has been available on how the domains interact and communicate. This may be because of inherent interdomain mobility hindering crystallization, or because crystallized molecules may not represent the active domain orientations(2). In solution, the large size and internal dynamics of multidomain fragments (> 35 kilodaltons) make structure determination by nuclear magnetic resonance a challenge and require advanced technologies. Here we present the solution structure of the apo-thiolation-thioesterase (T-TE) di-domain fragment of the Escherichia coli enterobactin synthetase EntF NRPS subunit. In the holoenzyme, the T domain carries the growing chain tethered to a 4 '-phosphopantetheine whereas the TE domain catalyses hydrolysis and cyclization of the iron chelator enterobactin. The T-TE di-domain forms a compact but dynamic structure with a well-defined domain interface; the two active sites are at a suitable distance for substrate transfer from T to TE. We observe extensive interdomain and intradomain motions forwell-defined regions and show that these are modulated by interactions with proteins that participate in the biosynthesis. The T-TE interaction described here provides a model for NRPS, PKS and FAS function in general as T-TE-like di-domains typically catalyse the last step in numerous assembly-line chain-termination machineries.
引用
收藏
页码:903 / U62
页数:5
相关论文
共 46 条
[1]   H-1-H-1 CORRELATION VIA ISOTROPIC MIXING OF C-13 MAGNETIZATION, A NEW 3-DIMENSIONAL APPROACH FOR ASSIGNING H-1 AND C-13 SPECTRA OF C-13-ENRICHED PROTEINS [J].
BAX, A ;
CLORE, GM ;
GRONENBORN, AM .
JOURNAL OF MAGNETIC RESONANCE, 1990, 88 (02) :425-431
[2]   Structural basis for the cyclization of the lipopeptide antibiotic surfactin by the thioesterase domain SrfTE [J].
Bruner, SD ;
Weber, T ;
Kohli, RM ;
Schwarzer, D ;
Marahiel, MA ;
Walsh, CT ;
Stubbs, MT .
STRUCTURE, 2002, 10 (03) :301-310
[3]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[4]   Protein backbone angle restraints from searching a database for chemical shift and sequence homology [J].
Cornilescu, G ;
Delaglio, F ;
Bax, A .
JOURNAL OF BIOMOLECULAR NMR, 1999, 13 (03) :289-302
[5]   NMRPIPE - A MULTIDIMENSIONAL SPECTRAL PROCESSING SYSTEM BASED ON UNIX PIPES [J].
DELAGLIO, F ;
GRZESIEK, S ;
VUISTER, GW ;
ZHU, G ;
PFEIFER, J ;
BAX, A .
JOURNAL OF BIOMOLECULAR NMR, 1995, 6 (03) :277-293
[6]   NMR spectroscopy: a multifaceted approach to macromolecular structure [J].
Ferentz, AE ;
Wagner, G .
QUARTERLY REVIEWS OF BIOPHYSICS, 2000, 33 (01) :29-65
[7]   Solution structure and dynamics of oxytetracycline polyketide synthase acyl carrier protein from Streptomyces rimosus [J].
Findlow, SC ;
Winsor, C ;
Simpson, TJ ;
Crosby, J ;
Crump, MP .
BIOCHEMISTRY, 2003, 42 (28) :8423-8433
[8]   Non-uniformly sampled double-TROSY hNcaNH experiments for NMR sequential assignments of large proteins [J].
Frueh, DP ;
Sun, ZYJ ;
Vosburg, DA ;
Walsh, CT ;
Hoch, JC ;
Wagner, G .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (17) :5757-5763
[9]   Determination of all nOes in 1H-13C-Me-ILV-U-2H-15N proteins with two time-shared experiments [J].
Frueh, DP ;
Vosburg, DA ;
Walsh, CT ;
Wagner, G .
JOURNAL OF BIOMOLECULAR NMR, 2006, 34 (01) :31-40
[10]   Production and incorporation of N-15, C-13, H-2 (H-1-delta 1 methyl) isoleucine into proteins for multidimensional NMR studies [J].
Gardner, KH ;
Kay, LE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (32) :7599-7600