A Grassmann-Rayleigh quotient iteration for computing invariant subspaces

被引:55
作者
Absil, PA
Mahony, R
Sepulchre, R
Van Dooren, P
机构
[1] Univ Liege, Inst Elect Montefiore, B-4000 Liege, Belgium
[2] Australian Natl Univ, Dept Engn, Canberra, ACT 0200, Australia
[3] Univ Catholique Louvain, Dept Engn Math, B-1348 Louvain, Belgium
关键词
Rayleigh quotient iteration; invariant subspace; Grassmann manifold;
D O I
10.1137/S0036144500378648
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The classical Rayleigh quotient iteration (RQI) allows one to compute a one-dimensional invariant subspace of a symmetric matrix A. Here we propose a generalization of the RQl which computes a p-dimensional invariant subspace of A. Cubic convergence is preserved and the cost per iteration is low compared to other methods proposed in the literature.
引用
收藏
页码:57 / 73
页数:17
相关论文
共 23 条
[1]  
BAL Z, 2000, TEMPLATES SOLUTIONS
[2]   ALGORITHM - SOLUTION OF MATRIX EQUATION AX+XB = C [J].
BARTELS, RH ;
STEWART, GW .
COMMUNICATIONS OF THE ACM, 1972, 15 (09) :820-&
[3]   THE DYNAMICS OF RAYLEIGH QUOTIENT ITERATION [J].
BATTERSON, S ;
SMILLIE, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (03) :624-636
[4]  
CHATELIN F, 1984, COMPUTING S, V5, P67
[5]   3 METHODS FOR REFINING ESTIMATES OF INVARIANT SUBSPACES [J].
DEMMEL, JW .
COMPUTING, 1987, 38 (01) :43-57
[6]  
Dongarra Jack J., 1991, SOLVING LINEAR SYSTE
[7]   IMPROVING THE ACCURACY OF COMPUTED EIGENVALUES AND EIGENVECTORS [J].
DONGARRA, JJ ;
MOLER, CB ;
WILKINSON, JH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (01) :23-45
[8]  
DOOLIN BF, 1990, MONOGR TXB PURE APPL, V136
[9]   The geometry of algorithms with orthogonality constraints [J].
Edelman, A ;
Arias, TA ;
Smith, ST .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1998, 20 (02) :303-353
[10]   Choosing the forcing terms in an inexact Newton method [J].
Eisenstat, SC ;
Walker, HF .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (01) :16-32