Molecular mechanism of phenoxodiol-induced apoptosis in ovarian carcinoma cells

被引:69
作者
Alvero, AB
O'Malley, D
Brown, D
Kelly, G
Garg, M
Chen, W
Rutherford, T
Mor, G
机构
[1] Yale Univ, Sch Med, Dept Obstet & Gynecol, New Haven, CT 06520 USA
[2] Novogen Ltd, N Ryde, NSW, Australia
关键词
chemosensitizer; ovarian carcinoma; apoptosis; caspase-2; XIAP;
D O I
10.1002/cncr.21633
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
BACKGROUND. Previously, it was demonstrated that phenoxodiol induces apoptosis in epithelial ovarian carcinoma (EOC) cells and that it is capable of sensitizing these cells to Fas-mediated apoptosis. The objectives of this study were to determine whether phenoxodiol can also act as chemosensitizer to chemotherapeutic agents and to characterize the molecular mechanism behind its sensitizing effect. METHODS. Ten EOC cell lines were used in this study. The effect of phenoxodiol on the inhibitory concentration 50% (IC50) of carboplatin, paclitaxel, and gemcitabine was determined by the CellTiter 96 Assay. The in vivo effect of combination treatments with phenoxodiol and the above-mentioned agents was determined in animal xenograft models. Apoptosis was measured using the Caspase-Glo Assay and the apoptotic cascade was characterized by Western blot analyses. RESULTS. The results showed that phenoxodiol is able to sensitize EOC cells to carboplatin, paclitaxel, and gemcitabine both in vitro and in vivo. In addition, it was demonstrated that phenoxodiol is capable of inducing apoptosis by: 1) the activation of the mitochondrial pathway through caspase-2 and Bid signaling, and 2) the proteasomal degradation of the anti-apoptotic protein XIAP. CONCLUSION. Understanding the components of the apoptotic pathway activated by phenoxodiol, which allows it to sensitize EOC cells to chemotherapeutic agents, will provide valuable information on the characteristic mode of action of a chemosensitizer. This will help in the identification of novel drugs and in the design of better strategies for combination therapy in patients with recurrent ovarian carcinoma.
引用
收藏
页码:599 / 608
页数:10
相关论文
共 20 条
  • [1] Proteasome-dependent decrease in Akt by growth factors in vascular smooth muscle cells
    Adachi, M
    Katsumura, KR
    Fujii, K
    Kobayashi, S
    Aoki, H
    Matsuzaki, M
    [J]. FEBS LETTERS, 2003, 554 (1-2) : 77 - 80
  • [2] Phenoxodiol, a novel isoflavone, induces G1 arrest by specific loss in cyclin-dependent kinase 2 activity by p53-independent induction of p21WAF1/CIP1
    Aguero, MF
    Facchinetti, MM
    Sheleg, Z
    Senderowicz, AM
    [J]. CANCER RESEARCH, 2005, 65 (08) : 3364 - 3373
  • [3] BEHRENS BC, 1987, CANCER RES, V47, P414
  • [4] Constantinou AI, 2002, ANTICANCER RES, V22, P2581
  • [5] RETRACTED: Akt phosphorylation and stabilization of X-linked inhibitor of apoptosis protein (XIAP) (Retracted Article)
    Dan, HC
    Sun, M
    Kaneko, S
    Feldman, RI
    Nicosia, SV
    Wang, HG
    Tsang, BK
    Cheng, JQ
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (07) : 5405 - 5412
  • [6] Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases
    Deveraux, QL
    Leo, E
    Stennicke, HR
    Welsh, K
    Salvesen, GS
    Reed, JC
    [J]. EMBO JOURNAL, 1999, 18 (19) : 5242 - 5251
  • [7] Apoptosis-based evaluation of chemosensitivity in ovarian cancer patients
    Flick, MB
    O'Malley, D
    Rutherford, T
    Rodov, S
    Kamsteeg, M
    Hao, XY
    Schwartz, P
    Kacinski, BM
    Mor, G
    [J]. JOURNAL OF THE SOCIETY FOR GYNECOLOGIC INVESTIGATION, 2004, 11 (04) : 252 - 259
  • [8] Fraser M, 2003, CANCER RES, V63, P7081
  • [9] XIAP: Apoptotic brake and promising therapeutic target
    Holcik, M
    Gibson, H
    Korneluk, RG
    [J]. APOPTOSIS, 2001, 6 (04) : 253 - 261
  • [10] Death and anti-death: Tumour resistance to apoptosis
    Igney, FH
    Krammer, PH
    [J]. NATURE REVIEWS CANCER, 2002, 2 (04) : 277 - 288