Resistive Switching by Voltage-Driven Ion Migration in Bipolar RRAM-Part II: Modeling

被引:418
作者
Larentis, Stefano [1 ,2 ]
Nardi, Federico [1 ,2 ]
Balatti, Simone [1 ,2 ]
Gilmer, David C. [3 ]
Ielmini, Daniele [1 ,2 ]
机构
[1] Politecn Milan, Dipartimento Elettron & Informaz, I-20133 Milan, Italy
[2] Politecn Milan, Italian Univ Nanoelect Team IU NET, I-20133 Milan, Italy
[3] SEMATECH, Front End Proc & Emerging Technol, Austin, TX 78741 USA
关键词
Insulator-metal transition; memory modeling; nonvolatile memory (NVM); resistive switching; resistive-switching memory (RRAM); MECHANISMS; DIFFUSION;
D O I
10.1109/TED.2012.2202320
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Resistive-switching memory (RRAM) based on transition metal oxides is a potential candidate for replacing Flash and dynamic random access memory in future generation nodes. Although very promising from the standpoints of scalability and technology, RRAM still has severe drawbacks in terms of understanding and modeling of the resistive-switching mechanism. This paper addresses the modeling of resistive switching in bipolar metal-oxide RRAMs. Reset and set processes are described in terms of voltage-driven ion migration within a conductive filament generated by electroforming. Ion migration is modeled by drift-diffusion equations with Arrhenius-activated diffusivity and mobility. The local temperature and field are derived from the self-consistent solution of carrier and heat conduction equations in a 3-D axis-symmetric geometry. The model accounts for set-reset characteristics, correctly describing the abrupt set and gradual reset transitions and allowing scaling projections for metal-oxide RRAM.
引用
收藏
页码:2468 / 2475
页数:8
相关论文
共 36 条
[1]  
[Anonymous], PHYS TECHNOLOGY SEMI
[2]  
[Anonymous], P IMW
[3]   Highly scalable non-volatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses [J].
Baek, IG ;
Lee, MS ;
Seo, S ;
Lee, MJ ;
Seo, DH ;
Suh, DS ;
Park, JC ;
Park, SO ;
Kim, HS ;
Yoo, IK ;
Chung, UI ;
Moon, JT .
IEEE INTERNATIONAL ELECTRON DEVICES MEETING 2004, TECHNICAL DIGEST, 2004, :587-590
[4]   Metal oxide resistive memory switching mechanism based on conductive filament properties [J].
Bersuker, G. ;
Gilmer, D. C. ;
Veksler, D. ;
Kirsch, P. ;
Vandelli, L. ;
Padovani, A. ;
Larcher, L. ;
McKenna, K. ;
Shluger, A. ;
Iglesias, V. ;
Porti, M. ;
Nafria, M. .
JOURNAL OF APPLIED PHYSICS, 2011, 110 (12)
[5]   Modeling of Set/Reset Operations in NiO-Based Resistive-Switching Memory Devices [J].
Cagli, Carlo ;
Nardi, Federico ;
Ielmini, Daniele .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2009, 56 (08) :1712-1720
[6]   Physical models of size-dependent nanofilament formation and rupture in NiO resistive switching memories [J].
Ielmini, D. ;
Nardi, F. ;
Cagli, C. .
NANOTECHNOLOGY, 2011, 22 (25)
[7]   Scaling analysis of submicrometer nickel-oxide-based resistive switching memory devices [J].
Ielmini, D. ;
Spiga, S. ;
Nardi, F. ;
Cagli, C. ;
Lamperti, A. ;
Cianci, E. ;
Fanciulli, M. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (03)
[8]  
Ielmini D., 2011, IEDM, P409
[9]   Thermochemical resistive switching: materials, mechanisms, and scaling projections [J].
Ielmini, Daniele ;
Bruchhaus, Rainer ;
Waser, Rainer .
PHASE TRANSITIONS, 2011, 84 (07) :570-602
[10]   Modeling the Universal Set/Reset Characteristics of Bipolar RRAM by Field- and Temperature-Driven Filament Growth [J].
Ielmini, Daniele .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2011, 58 (12) :4309-4317