Correlation of Phase Behavior and Charge Transport in Conjugated Polymer/Fullerene Blends

被引:150
作者
Kim, Jung Yong [1 ]
Frisbie, Daniel [1 ]
机构
[1] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA
关键词
D O I
10.1021/jp8061493
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The phase diagrams for three conjugated polymer/fullerene blends of interest for polymer solar cells, namely semicrystalline poly(3-hexylthiophene) (P3HT):methanofullerene [6,6]-phenyl C-61-butyric acid methyl ester (PCBM), poly(2-methoxy-5-(3',7'-dimethyloctyloxy)-p-phenylenevinylene) (MDMO-PPV):PCBM, and poly-(2-methoxy-5-(2'-ethylhexyloxy)-p-phenylenevinylene) (MEH-PPV):PCBM, have been constructed based on X-ray scattering data and differential scanning calorimetery (DSC). Both melting point depression and glass transition temperature elevation were observed in the P3HT:PCBM blends as a function of increasing PCBM wt %. The PCBM solubility limit, i.e., the phase-separation point, was determined to be 30, 40, and 50 wt % PCBM for P3HT:PCBM, MDMO-PPV:PCBM, and MEH-PPV:PCBM mixtures, respectively. The phase behavior of the blends is directly correlated with electrical transport behavior determined by measuring field effect conduction in a transistor testbed. Specifically, below the solubility limit for PCBM in all three blends, only hole transport was observed, and above the solubility limit both hole and electron conduction were measured.
引用
收藏
页码:17726 / 17736
页数:11
相关论文
共 66 条