Aminoguanidine inhibits caspase-3 and calpain activation without affecting microglial activation following neonatal transient cerebral ischemia

被引:33
作者
Dingman, A
Lee, SY
Derugin, N
Wendland, MF
Vexler, ZS
机构
[1] Univ Calif San Francisco, Dept Neurol, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Dept Neurosurg, San Francisco, CA 94143 USA
[3] Univ Calif San Francisco, Dept Radiol, San Francisco, CA 94143 USA
关键词
aminoguanidine; microglia; neonatal; stroke;
D O I
10.1111/j.1471-4159.2006.03672.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Microglial cells, the resident macrophages of the CNS, can be both beneficial and detrimental to the brain. These cells play a central role as mediators of neuroinflammation associated with many neurodegenerative states, including cerebral ischemia. Because microglial cells are both a major source of inducible nitric oxide synthase (iNOS)/nitric oxide (NO) production locally in the injured brain and are activated by NO-mediated injury, we tested whether iNOS inhibition reduces microglial activation and ischemic injury in a neonatal focal ischemia-reperfusion model. Post-natal day 7 rats were subjected to a 2 h transient middle cerebral artery (MCA) occlusion. Pups with confirmed injury on diffusion-weighted magnetic resonance imaging (MRI) during occlusion were administered 300 mg/kg/dose aminoguanidine (AG) or vehicle at 0, 4 and 18 h after reperfusion, and animals were killed at 24 or 72 h post-reperfusion. The effect of AG on microglial activation as judged by the acquisition of ED1 immunoreactivity and proliferation of ED1-positive cells, on activation of cell death pathways and on injury volume, was determined. The study shows that while AG attenuates caspase 3 and calpain activation in the injured tissue, treatment does not affect the rapidly occurring activation and proliferation of microglia following transient MCA occlusion in the immature rat, or reduce injury size.
引用
收藏
页码:1467 / 1479
页数:13
相关论文
共 98 条
[1]   Expression of inducible nitric oxide synthase and cyclooxygenase-2 after excitotoxic damage to the immature rat brain [J].
Acarin, L ;
Peluffo, H ;
González, B ;
Castellano, B .
JOURNAL OF NEUROSCIENCE RESEARCH, 2002, 68 (06) :745-754
[2]  
Amat JA, 1996, GLIA, V16, P368, DOI 10.1002/(SICI)1098-1136(199604)16:4<368::AID-GLIA9>3.0.CO
[3]  
2-W
[4]   L-NAME REDUCES INFARCT VOLUME IN A FILAMENT MODEL OF TRANSIENT MIDDLE CEREBRAL-ARTERY OCCLUSION IN THE RAT PUP [J].
ASHWAL, S ;
COLE, DJ ;
OSBORNE, S ;
OSBORNE, TN ;
PEARCE, WJ .
PEDIATRIC RESEARCH, 1995, 38 (05) :652-656
[5]  
Bechmann I, 1997, GLIA, V20, P145, DOI 10.1002/(SICI)1098-1136(199706)20:2<145::AID-GLIA6>3.0.CO
[6]  
2-8
[7]   Synergistic activation of caspase-3 by m-calpain after neonatal hypoxia-ischemia - A mechanism of "pathological apoptosis"? [J].
Blomgren, K ;
Zhu, CL ;
Wang, XY ;
Karlsson, JO ;
Leverin, AL ;
Bahr, BA ;
Mallard, C ;
Hagberg, H .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (13) :10191-10198
[8]   In vitro model of microglial deramification: Ramified microglia transform into amoeboid phagocytes following addition of brain cell membranes to microglia-astrocyte cocultures [J].
Bohatschek, M ;
Kloss, CUA ;
Kalla, R ;
Raivich, G .
JOURNAL OF NEUROSCIENCE RESEARCH, 2001, 64 (05) :508-522
[9]   Chemokine and inflammatory cell response to hypoxia-ischemia in immature rats [J].
Bona, E ;
Andersson, AL ;
Blomgren, K ;
Gilland, E ;
Puka-Sundvall, M ;
Gustafson, K ;
Hagberg, H .
PEDIATRIC RESEARCH, 1999, 45 (04) :500-509
[10]   APOPTOSIS AND NECROSIS - 2 DISTINCT EVENTS INDUCED, RESPECTIVELY, BY MILD AND INTENSE INSULTS WITH N-METHYL-D-ASPARTATE OR NITRIC-OXIDE SUPEROXIDE IN CORTICAL CELL-CULTURES [J].
BONFOCO, E ;
KRAINC, D ;
ANKARCRONA, M ;
NICOTERA, P ;
LIPTON, SA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (16) :7162-7166