Transparent Electronics Based on Transfer Printed Aligned Carbon Nanotubes on Rigid and Flexible Substrates

被引:258
作者
Ishikawa, Fumiaki N. [1 ]
Chang, Hsiao-Kang [1 ]
Ryu, Koungmin [1 ]
Chen, Po-Chiang [1 ]
Badmaev, Alexander [1 ]
De Arco, Lewis Gomez [1 ]
Shen, Guozhen [1 ]
Zhou, Chongwu [1 ]
机构
[1] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
基金
美国国家科学基金会;
关键词
transparent transistor; flexible transistor; aligned nanotube; transfer printing; transparent display; THIN-FILM TRANSISTORS; ROOM-TEMPERATURE; WORK FUNCTION; SINGLE; DISPLAYS; SEMICONDUCTORS; FABRICATION; SCIENCE;
D O I
10.1021/nn800434d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report high-performance fully transparent thin-film transistors (TTFTs) on both rigid and flexible substrates with transfer printed aligned nanotubes as the active channel and indium-tin oxide as the source, drain, and gate electrodes. Such transistors have been fabricated through low-temperature processing, which allowed device fabrication even on flexible substrates. Transparent transistors with high effective mobilities (similar to 1300 cm(2) V-1 s(-1)) were first demonstrated on glass substrates via engineering of the source and drain contacts, and high on/off ratio (3 x 10(4)) was achieved using electrical breakdown. In addition, flexible TTFTs with good transparency were also fabricated and successfully operated under bending up to 120 degrees. All of the devices showed good transparency (similar to 80% on average). The transparent transistors were further utilized to construct a fully transparent and flexible logic inverter on a plastic substrate and also used to control commercial GaN light-emitting diodes (LEDs) with light intensity modulation of 10(3). Our results suggest that aligned nanotubes have great potential to work as building blocks for future transparent electronics.
引用
收藏
页码:73 / 79
页数:7
相关论文
共 32 条
[1]   Transparent and flexible carbon nanotube transistors [J].
Artukovic, E ;
Kaempgen, M ;
Hecht, DS ;
Roth, S ;
GrUner, G .
NANO LETTERS, 2005, 5 (04) :757-760
[2]   Highly bendable, transparent thin-film transistors that use carbon-nanotube-based conductors and semiconductors with elastomeric dielectrics [J].
Cao, Q ;
Hur, SH ;
Zhu, ZT ;
Sun, YG ;
Wang, CJ ;
Meitl, MA ;
Shim, M ;
Rogers, JA .
ADVANCED MATERIALS, 2006, 18 (03) :304-+
[3]   Fully transparent thin-film transistor devices based on SnO2 nanowires [J].
Dattoli, Eric N. ;
Wan, Qing ;
Guo, Wei ;
Chen, Yanbin ;
Pan, Xiaoqing ;
Lu, Wei .
NANO LETTERS, 2007, 7 (08) :2463-2469
[4]  
Dimitrakopoulos CD, 2002, ADV MATER, V14, P99, DOI 10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO
[5]  
2-9
[6]   Organic and polymer transistors for electronics [J].
Dodabalapur, Ananth .
MATERIALS TODAY, 2006, 9 (04) :24-30
[7]   Extraordinary mobility in semiconducting carbon nanotubes [J].
Durkop, T ;
Getty, SA ;
Cobas, E ;
Fuhrer, MS .
NANO LETTERS, 2004, 4 (01) :35-39
[8]   The path to ubiquitous and low-cost organic electronic appliances on plastic [J].
Forrest, SR .
NATURE, 2004, 428 (6986) :911-918
[9]   Fully transparent ZnO thin-film transistor produced at room temperature [J].
Fortunato, EMC ;
Barquinha, PMC ;
Pimentel, ACMBG ;
Gonçalves, AMF ;
Marques, AJS ;
Pereira, LMN ;
Martins, RFP .
ADVANCED MATERIALS, 2005, 17 (05) :590-+
[10]   ALL-POLYMER FIELD-EFFECT TRANSISTOR REALIZED BY PRINTING TECHNIQUES [J].
GARNIER, F ;
HAJLAOUI, R ;
YASSAR, A ;
SRIVASTAVA, P .
SCIENCE, 1994, 265 (5179) :1684-1686