Anatomic demarcation by positional variation in fibroblast gene expression programs

被引:373
作者
Rinn, John L.
Bondre, Chanda
Gladstone, Hayes B.
Brown, Patrick O. [1 ]
Chang, Howard Y.
机构
[1] Stanford Univ, Sch Med, Dept Dermatol, Program Epithelial Biol, Stanford, CA 94305 USA
[2] Stanford Univ, Sch Med, Dept Biochem, Stanford, CA 94305 USA
[3] Stanford Univ, Sch Med, Howard Hughes Med Inst, Stanford, CA 94305 USA
关键词
D O I
10.1371/journal.pgen.0020119
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Fibroblasts are ubiquitous mesenchymal cells with many vital functions during development, tissue repair, and disease. Fibroblasts from different anatomic sites have distinct and characteristic gene expression patterns, but the principles that govern their molecular specialization are poorly understood. Spatial organization of cellular differentiation may be achieved by unique specification of each cell type; alternatively, organization may arise by cells interpreting their position along a coordinate system. Here we test these models by analyzing the genome-wide gene expression profiles of primary fibroblast populations from 43 unique anatomical sites spanning the human body. Large-scale differences in the gene expression programs were related to three anatomic divisions: anterior-posterior (rostral-caudal), proximal-distal, and dermal versus nondermal. A set of 337 genes that varied according to these positional divisions was able to group all 47 samples by their anatomic sites of origin. Genes involved in pattern formation, cell-cell signaling, and matrix remodeling were enriched among this minimal set of positional identifier genes. Many important features of the embryonic pattern of HOX gene expression were retained in fibroblasts and were confirmed both in vitro and in vivo. Together, these findings suggest that site-specific variations in fibroblast gene expression programs are not idiosyncratic but rather are systematically related to their positional identities relative to major anatomic axes.
引用
收藏
页码:1084 / 1096
页数:13
相关论文
共 32 条
[1]   Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [J].
Alizadeh, AA ;
Eisen, MB ;
Davis, RE ;
Ma, C ;
Lossos, IS ;
Rosenwald, A ;
Boldrick, JG ;
Sabet, H ;
Tran, T ;
Yu, X ;
Powell, JI ;
Yang, LM ;
Marti, GE ;
Moore, T ;
Hudson, J ;
Lu, LS ;
Lewis, DB ;
Tibshirani, R ;
Sherlock, G ;
Chan, WC ;
Greiner, TC ;
Weisenburger, DD ;
Armitage, JO ;
Warnke, R ;
Levy, R ;
Wilson, W ;
Grever, MR ;
Byrd, JC ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
NATURE, 2000, 403 (6769) :503-511
[2]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[3]  
BALONGNIA J, 2003, DERMATOLOGY
[4]   Coherent development of dermomyotome and dermis from the entire mediolateral extent of the dorsal somite [J].
Ben-Yair, R ;
Kahane, N ;
Kalcheim, C .
DEVELOPMENT, 2003, 130 (18) :4325-4336
[5]   Genomic maps and comparative analysis of histone modifications in human and mouse [J].
Bernstein, BE ;
Kamal, M ;
Lindblad-Toh, K ;
Bekiranov, S ;
Bailey, DK ;
Huebert, DJ ;
McMahon, S ;
Karlsson, EK ;
Kulbokas, EJ ;
Gingeras, TR ;
Schreiber, SL ;
Lander, ES .
CELL, 2005, 120 (02) :169-181
[6]   Diversity, topographic differentiation, and positional memory in human fibroblasts [J].
Chang, HY ;
Chi, JT ;
Dudoit, S ;
Bondre, C ;
van de Rijn, M ;
Botstein, D ;
Brown, PO .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (20) :12877-12882
[7]   Endothelial cell diversity revealed by global expression profiling [J].
Chi, JT ;
Chang, HY ;
Haraldsen, G ;
Jahnsen, FL ;
Troyanskaya, OG ;
Chang, DS ;
Wang, Z ;
Rockson, SG ;
Van de Rijn, M ;
Botstein, D ;
Brown, PO .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (19) :10623-10628
[8]  
Dhouailly D., 1984, PATTERN FORMATION, P581
[9]   MAMMALIAN MUSCLE-CELLS BEAR A CELL-AUTONOMOUS, HERITABLE MEMORY OF THEIR ROSTROCAUDAL POSITION [J].
DONOGHUE, MJ ;
MORRISVALERO, R ;
JOHNSON, YR ;
MERLIE, JP ;
SANES, JR .
CELL, 1992, 69 (01) :67-77
[10]   Limb malformations and the human HOX genes [J].
Goodman, FR .
AMERICAN JOURNAL OF MEDICAL GENETICS, 2002, 112 (03) :256-265