Atomic layer deposition and biocompatibility of titanium nitride nano-coatings on cellulose fiber substrates

被引:98
作者
Hyde, G. K. [1 ]
McCullen, S. D. [2 ]
Jeon, S. [3 ]
Stewart, S. M. [1 ]
Jeon, H. [3 ]
Loboa, E. G. [2 ]
Parsons, G. N. [1 ]
机构
[1] N Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA
[2] Univ N Carolina, Joint Dept Biomed Engn, Chapel Hill, NC USA
[3] Hanyang Univ, Div Mat Sci & Engn, Seoul 133791, South Korea
基金
美国国家科学基金会;
关键词
THIN-FILMS; SURFACE MODIFICATION; CONFORMAL TIN; AL2O3; FILMS; BIOMATERIALS; TEMPERATURE; SCAFFOLDS; ADHESION; GROWTH; TISSUE;
D O I
10.1088/1748-6041/4/2/025001
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Atomic layer deposition (ALD) is investigated as a process to produce inorganic metallic bio-adhesive coatings on cellulosic fiber substrates. The atomic layer deposition technique is known to be capable of forming highly conformal and uniform inorganic thin film coatings on a variety of complex surfaces, and this work presents an initial investigation of ALD on porous substrate materials to produce high-precision biocompatible titanium oxynitride coatings. X-ray photoelectron spectroscopy (XPS) confirmed TiNOx composition, and transmission electron microscopy (TEM) analysis showed the coatings to be uniform and conformal on the fiber surfaces. Biocompatibility of the modified structures was determined as a function of coating layer thickness by fluorescent live/dead staining of human adipose-derived adult stem cells (hADSC) at 6, 12 and 24 h. Cell adhesion showed that thin TiNOx coatings yielded the highest number of cells after 24 h with a sample coated with a 20 angstrom coating having approximately 28.4 +/- 3.50 ng DNA. By altering the thickness of the deposited film, it was possible to control the amount of cells adhered to the samples. This work demonstrates the potential of low temperature ALD as a surface modification technique to produce biocompatible cellulose and other implant materials.
引用
收藏
页数:10
相关论文
共 52 条
[1]  
[Anonymous], 1992, HIGH RESOLUTION XPS, DOI DOI 10.1002/ADMA.19930051035
[2]   Osteoblast adhesion on biomaterials [J].
Anselme, K .
BIOMATERIALS, 2000, 21 (07) :667-681
[3]   Study of TiN and ZrN thin films grown by cathodic arc technique [J].
Arias, D. F. ;
Arango, Y. C. ;
Devia, A. .
APPLIED SURFACE SCIENCE, 2006, 253 (04) :1683-1690
[4]   Surface behaviour of biomaterials:: The theta surface for biocompatibility [J].
Baier, Robert Edward .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2006, 17 (11) :1057-1062
[5]   Finishing of textile materials [J].
Bajaj, P .
JOURNAL OF APPLIED POLYMER SCIENCE, 2002, 83 (03) :631-659
[6]   SURFACE CHARACTERIZATION OF PLASMA-NITRIDED TITANIUM - AN XPS STUDY [J].
BERTOTI, I ;
MOHAI, M ;
SULLIVAN, JL ;
SAIED, SO .
APPLIED SURFACE SCIENCE, 1995, 84 (04) :357-371
[7]   TEM and SFM investigation of nitrided Ti-1Al-1Mn alloy for medical applications [J].
Biel, M ;
Lucki, M ;
Moskalewicz, T ;
Lekki, J ;
Wierzchon, T ;
Czyrska-Filemonowicz, A .
MATERIALS CHEMISTRY AND PHYSICS, 2003, 81 (2-3) :430-433
[8]   Bioactivity of polyurethane-based scaffolds coated with Bioglass® [J].
Bil, M. ;
Ryszkowska, J. ;
Roether, J. A. ;
Bretcanu, O. ;
Boccaccini, A. R. .
BIOMEDICAL MATERIALS, 2007, 2 (02) :93-101
[9]  
Black S., 2005, Textile for Protection, P60
[10]   Effects of ion implantation on nano-topographic properties [J].
Braceras, I. ;
Briz, N. ;
Garcia, F. ;
Munoz, R. ;
Viviente, J. L. ;
Onate, J. I. .
SURFACE & COATINGS TECHNOLOGY, 2007, 201 (19-20) :8511-8515