Contrasting characteristics of linear-field and cross-field atmospheric plasma jets

被引:249
作者
Walsh, J. L. [1 ]
Kong, M. G. [1 ]
机构
[1] Univ Loughborough, Dept Elect & Elect Engn, Loughborough LE11 3TU, Leics, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1063/1.2982497
中图分类号
O59 [应用物理学];
学科分类号
摘要
This letter reports an experimental study of two types of atmospheric pressure plasma jets in terms of their fundamental properties and their efficiency in etching polymeric materials. The first plasma jet has a cross-field configuration with its electric field perpendicular to its gas flow field, whereas the second is a linear-field device having parallel electric and flow fields. The linear-field jet is shown to drive electron transportation to the downstream application region, thus facilitating more active plasma chemistry there. This is responsible for its etching rate of polyamide films being 13-fold that of its cross-field counterpart. (C) 2008 American Institute of Physics.
引用
收藏
页数:3
相关论文
共 24 条
[1]   Surface modification of polymer fibre by the new atmospheric pressure cold plasma jet [J].
Cheng, Cheng ;
Zhang Liye ;
Zhan, Ru-Juan .
SURFACE & COATINGS TECHNOLOGY, 2006, 200 (24) :6659-6665
[2]   Effects of microbial loading and sporulation temperature on atmospheric plasma inactivation of Bacillus subtilis spores -: art. no. 153901 [J].
Deng, XT ;
Shi, JJ ;
Shama, G ;
Kong, MG .
APPLIED PHYSICS LETTERS, 2005, 87 (15) :1-3
[3]   Physical mechanisms of inactivation of Bacillus subtilis spores using cold atmospheric plasmas [J].
Deng, Xutao ;
Shi, Jianjun ;
Kong, Michael G. .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2006, 34 (04) :1310-1316
[4]   Non-thermal atmospheric pressure discharges for surface modification [J].
Foest, R ;
Kindel, E ;
Ohl, A ;
Stieber, M ;
Weltmann, KD .
PLASMA PHYSICS AND CONTROLLED FUSION, 2005, 47 :B525-B536
[5]   Localized and ultrahigh-rate etching of silicon wafers using atmospheric-pressure microplasma jets [J].
Ichiki, T ;
Taura, R ;
Horiike, Y .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (01) :35-39
[6]   Microplasmas: Sources, particle kinetics, and biomedical applications [J].
Iza, Felipe ;
Kim, Gon Jun ;
Lee, Seung Min ;
Lee, Jae Koo ;
Walsh, James L. ;
Zhang, Yuantao T. ;
Kong, Michael G. .
PLASMA PROCESSES AND POLYMERS, 2008, 5 (04) :322-344
[7]   Electrical and optical characterization of the plasma needle [J].
Kieft, IE ;
van der Laan, EP ;
Stoffels, E .
NEW JOURNAL OF PHYSICS, 2004, 6 :1-14
[8]   Comparative study of atmospheric pressure low and radio frequency microjet plasmas produced in a single electrode configuration [J].
Kim, Dan Bee ;
Rhee, J. K. ;
Gweon, B. ;
Moon, S. Y. ;
Choe, W. .
APPLIED PHYSICS LETTERS, 2007, 91 (15)
[9]   DEVELOPMENT AND APPLICATION OF A MICROBEAM PLASMA GENERATOR [J].
KOINUMA, H ;
OHKUBO, H ;
HASHIMOTO, T ;
INOMATA, K ;
SHIRAISHI, T ;
MIYANAGA, A ;
HAYASHI, S .
APPLIED PHYSICS LETTERS, 1992, 60 (07) :816-817
[10]   Room-temperature atmospheric pressure plasma plume for biomedical applications [J].
Laroussi, M ;
Lu, X .
APPLIED PHYSICS LETTERS, 2005, 87 (11)