Enzymatically inactive macrophage migration inhibitory factor inhibits monocyte chemotaxis and random migration

被引:95
作者
Hermanowski-Vosatka, A
Mundt, SS
Ayala, JM
Goyal, S
Hanlon, WA
Czerwinski, RM
Wright, SD
Whitman, CP
机构
[1] Merck Res Labs, Dept Endocrinol & Chem Biol, Rahway, NJ 07065 USA
[2] Merck Res Labs, Dept Immunol & Rheumatol, Rahway, NJ 07065 USA
[3] Univ Texas, Coll Pharm, Div Med Chem, Austin, TX 78712 USA
关键词
D O I
10.1021/bi991352p
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Macrophage migration inhibitory factor (MIF) is a cytokine that was first described as an inhibitor of the random migration of monocytes and macrophages and has since been proposed to have a number of immune and catalytic functions. One of the functions assigned to MIF is that of a tautomerase that interconverts the enol and keto forms of phenylpyruvate and (p-hydroxyphenyl)pyruvate and converts D-dopachrome, a stereoisomer of naturally occurring L-dopachrome, to 5,6-dihydroxyindole-2-carboxylic acid, The physiological significance of the MIF enzymatic activity is unclear. The three-dimensional structure of MIF is strikingly similar to that of two microbial enzymes (4-oxalocrotonate tautomerase and 5-carboxymethyl-2-hydroxymuconate isomerase) that otherwise share little sequence identity with MIF, MIF and these two enzymes have an invariant N-terminal proline that serves as a catalytic base. Here we report a new biological function for MIF, as an inhibitor of monocyte chemoattractant protein 1- (MCP-1-) induced chemotaxis of human peripheral blood monocytes. We find that MIF inhibition of chemotaxis does not occur at the level of the CC chemokine receptor for MCP-1, CCR2, since MIF does not alter the binding of I-125-MCP-1 to monocytes. The role of MIF enzymatic activity in inhibition of monocyte chemotaxis and random migration was studied with two MIF mutants in which the N-terminal proline was replaced with either a serine or a phenylalanine. Both mutants remain capable of inhibiting monocyte chemotaxis and random migration despite significantly reduced or no phenylpyruvate tautomerase activity. These data suggest that this enzymatic activity of MIF does not play a role in its migration inhibiting properties.
引用
收藏
页码:12841 / 12849
页数:9
相关论文
共 39 条
[1]  
Apte RS, 1998, J IMMUNOL, V160, P5693
[2]   An essential regulatory role for macrophage migration inhibitory factor in T-cell activation [J].
Bacher, M ;
Metz, CN ;
Calandra, T ;
Mayer, K ;
Chesney, J ;
Lohoff, M ;
Gemsa, D ;
Donnelly, T ;
Bucala, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (15) :7849-7854
[3]   Biochemical and nutational investigations of the enzymatic activity of macrophage migration inhibitory factor [J].
Bendrat, K ;
AlAbed, Y ;
Callaway, DJE ;
Peng, T ;
Calandra, T ;
Metz, CN ;
Bucala, R .
BIOCHEMISTRY, 1997, 36 (49) :15356-15362
[4]   MIF IS A PITUITARY-DERIVED CYTOKINE THAT POTENTIATES LETHAL ENDOTOXEMIA [J].
BERNHAGEN, J ;
CALANDRA, T ;
MITCHELL, RA ;
MARTIN, SB ;
TRACEY, KJ ;
VOELTER, W ;
MANOGUE, KR ;
CERAMI, A ;
BUCALA, R .
NATURE, 1993, 365 (6448) :756-759
[5]   PURIFICATION, BIOACTIVITY, AND SECONDARY STRUCTURE-ANALYSIS OF MOUSE AND HUMAN MACROPHAGE-MIGRATION INHIBITORY FACTOR (MIF) [J].
BERNHAGEN, J ;
MITCHELL, RA ;
CALANDRA, T ;
VOELTER, W ;
CERAMI, A ;
BUCALA, R .
BIOCHEMISTRY, 1994, 33 (47) :14144-14155
[6]   Regulation of the immune response by macrophage migration inhibitory factor: biological and structural features [J].
Bernhagen, J ;
Calandra, T ;
Bucala, R .
JOURNAL OF MOLECULAR MEDICINE-JMM, 1998, 76 (3-4) :151-161
[7]   An essential role for macrophage migration inhibitory factor in the tuberculin delayed-type hypersensitivity reaction [J].
Bernhagen, J ;
Bacher, M ;
Calandra, T ;
Metz, CN ;
Doty, SB ;
Donnelly, T ;
Bucala, R .
JOURNAL OF EXPERIMENTAL MEDICINE, 1996, 183 (01) :277-282
[8]   MECHANISM OF A REACTION IN VITRO ASSOCIATED WITH DELAYED-TYPE HYPERSENSITIVITY [J].
BLOOM, BR ;
BENNETT, B .
SCIENCE, 1966, 153 (3731) :80-&
[9]   Targeted disruption of migration inhibitory factor gene reveals its critical role in sepsis [J].
Bozza, M ;
Satoskar, AR ;
Lin, GS ;
Lu, B ;
Humbles, AA ;
Gerard, C ;
David, JR .
JOURNAL OF EXPERIMENTAL MEDICINE, 1999, 189 (02) :341-346
[10]  
Bucala Richard, 1996, Cytokine and Growth Factor Reviews, V7, P19, DOI 10.1016/1359-6101(96)00008-1