Reassess the t Test: Interact with All Your Data via ANOVA

被引:48
作者
Brady, Siobhan M. [1 ]
Burow, Meike [2 ]
Busch, Wolfgang [3 ]
Carlborg, Orjan [4 ]
Denby, Katherine J. [5 ,6 ]
Glazebrook, Jane [7 ]
Hamilton, Eric S. [8 ]
Harmer, Stacey L. [1 ]
Haswell, Elizabeth S. [8 ]
Maloof, Julin N. [1 ]
Springer, Nathan M. [9 ,10 ]
Kliebenstein, Daniel J. [2 ,11 ]
机构
[1] Univ Calif Davis, Dept Plant Biol, Davis, CA 95616 USA
[2] Univ Copenhagen, DynaMo Ctr Excellence, DK-1871 Frederiksberg C, Denmark
[3] Austrian Acad Sci, Vienna Bioctr, Gregor Mendel Inst, A-1030 Vienna, Austria
[4] Swedish Univ Agr Sci, Div Computat Genet, Dept Clin Sci, SE-75007 Uppsala, Sweden
[5] Univ Warwick, Sch Life Sci, Coventry CV4 7AL, W Midlands, England
[6] Univ Warwick, Warwick Syst Biol Ctr, Coventry CV4 7AL, W Midlands, England
[7] Univ Minnesota, Dept Plant Biol, St Paul, MN 55108 USA
[8] Washington Univ, Dept Biol, St Louis, MO 63130 USA
[9] Univ Minnesota, Microbial & Plant Genom Inst, St Paul, MN 55108 USA
[10] Univ Minnesota, Dept Plant Biol, St Paul, MN 55108 USA
[11] Univ Calif Davis, Dept Plant Sci, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
ARABIDOPSIS; GENOME;
D O I
10.1105/tpc.15.00238
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Plant biology is rapidly entering an era where we have the ability to conduct intricate studies that investigate how a plant interacts with the entirety of its environment. This requires complex, large studies to measure how plant genotypes simultaneously interact with a diverse array of environmental stimuli. Successful interpretation of the results from these studies requires us to transition away from the traditional standard of conducting an array of pairwise t tests toward more general linear modeling structures, such as those provided by the extendable ANOVA framework. In this Perspective, we present arguments for making this transition and illustrate how it will help to avoid incorrect conclusions in factorial interaction studies (genotype 3 genotype, genotype 3 treatment, and treatment 3 treatment, or higher levels of interaction) that are becoming more prevalent in this new era of plant biology.
引用
收藏
页码:2088 / 2094
页数:7
相关论文
共 24 条
[1]  
[Anonymous], 2002, An R companion to applied regression
[2]   Fitting Linear Mixed-Effects Models Using lme4 [J].
Bates, Douglas ;
Maechler, Martin ;
Bolker, Benjamin M. ;
Walker, Steven C. .
JOURNAL OF STATISTICAL SOFTWARE, 2015, 67 (01) :1-48
[3]   A guide to statistical analysis in microbial ecology: a community-focused, living review of multivariate data analyses [J].
Buttigieg, Pier Luigi ;
Ramette, Alban .
FEMS MICROBIOLOGY ECOLOGY, 2014, 90 (03) :543-550
[4]   Epistasis and the release of genetic variation during long-term selection [J].
Carlborg, Ö ;
Jacobsson, L ;
Åhgren, P ;
Siegel, P ;
Andersson, L .
NATURE GENETICS, 2006, 38 (04) :418-420
[5]  
Crawley MJ, 2014, STAT INTRO USING R, V2
[6]   Separating parental environment from seed size effects on next generation growth and development in Arabidopsis [J].
Elwell, Angela L. ;
Gronwall, David S. ;
Miller, Nathan D. ;
Spalding, Edgar P. ;
Brooks, Tessa L. Durham .
PLANT CELL AND ENVIRONMENT, 2011, 34 (02) :291-301
[7]   Bias in Plant Gene Content Following Different Sorts of Duplication: Tandem, Whole-Genome, Segmental, or by Transposition [J].
Freeling, Michael .
ANNUAL REVIEW OF PLANT BIOLOGY, 2009, 60 :433-453
[8]   Violin plots: A box plot-density trace synergism [J].
Hintze, JL ;
Nelson, RD .
AMERICAN STATISTICIAN, 1998, 52 (02) :181-184
[9]   PSEUDOREPLICATION AND THE DESIGN OF ECOLOGICAL FIELD EXPERIMENTS [J].
HURLBERT, SH .
ECOLOGICAL MONOGRAPHS, 1984, 54 (02) :187-211
[10]   Cytoplasmic genetic variation and extensive cytonuclear interactions influence natural variation in the metabolome [J].
Joseph, Bindu ;
Corwin, Jason A. ;
Li, Baohua ;
Atwell, Suzi ;
Kliebenstein, Daniel J. .
ELIFE, 2013, 2