Spectral functions of the one-dimensional Hubbard model in the U->+infinity limit: How to use the factorized wave function

被引:81
作者
Penc, K
Hallberg, K
Mila, F
Shiba, H
机构
[1] UNIV TOULOUSE 3, PHYS QUANT LAB, F-31062 TOULOUSE, FRANCE
[2] TOKYO INST TECHNOL, DEPT PHYS, MEGURO KU, TOKYO 152, JAPAN
来源
PHYSICAL REVIEW B | 1997年 / 55卷 / 23期
关键词
D O I
10.1103/PhysRevB.55.15475
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We give the details of the calculation of the spectral functions of the one-dimensional Hubbard model using the spin-charge factorized wave function for several versions of the U --> + infinity limit. The spectral functions are expressed as a convolution of charge and spin dynamical correlation functions. A procedure to evaluate these correlation functions very accurately for large systems is developed, and analytical results are presented for the low-energy region. These results are fully consistent with the conformal field theory. We also propose a direct method of extracting the exponents from the matrix elements in more general cases.
引用
收藏
页码:15475 / 15488
页数:14
相关论文
共 52 条
[31]   ASYMPTOTIC SPIN-SPIN CORRELATIONS OF THE U-] INFINITY ONE-DIMENSIONAL HUBBARD-MODEL [J].
PAROLA, A ;
SORELLA, S .
PHYSICAL REVIEW LETTERS, 1990, 64 (15) :1831-1834
[32]   SPECTRAL-FUNCTION OF THE 1D HUBBARD-MODEL IN THE U-]+INFINITY LIMIT [J].
PENC, K ;
MILA, F ;
SHIBA, H .
PHYSICAL REVIEW LETTERS, 1995, 75 (05) :894-897
[33]   ONE-DIMENSIONAL HUBBARD-MODEL IN A MAGNETIC-FIELD AND THE MULTICOMPONENT TOMONAGA-LUTTINGER MODEL [J].
PENC, K ;
SOLYOM, J .
PHYSICAL REVIEW B, 1993, 47 (11) :6273-6292
[34]   Shadow band in the one-dimensional infinite-U Hubbard model [J].
Penc, K ;
Hallberg, K ;
Mila, F ;
Shiba, H .
PHYSICAL REVIEW LETTERS, 1996, 77 (07) :1390-1393
[35]   SPECTRAL PROPERTIES OF THE ONE-DIMENSIONAL HUBBARD-MODEL [J].
PREUSS, R ;
MURAMATSU, A ;
VONDERLINDEN, W ;
DIETERICH, P ;
ASSAAD, FF ;
HANKE, W .
PHYSICAL REVIEW LETTERS, 1994, 73 (05) :732-735
[36]   CORRELATION-FUNCTIONS AND CRITICAL EXPONENTS IN THE ONE-DIMENSIONAL ANISOTROPIC T-J MODEL [J].
PRUSCHKE, T ;
SHIBA, H .
PHYSICAL REVIEW B, 1991, 44 (01) :205-216
[37]   NONUNIVERSAL SPECTRAL PROPERTIES OF THE LUTTINGER MODEL [J].
SCHONHAMMER, K ;
MEDEN, V .
PHYSICAL REVIEW B, 1993, 47 (24) :16205-16215
[38]   CORRELATED FERMIONS IN 1 DIMENSION [J].
SCHULZ, HJ .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1991, 5 (1-2) :57-74
[39]   CORRELATION EXPONENTS AND THE METAL-INSULATOR-TRANSITION IN THE ONE-DIMENSIONAL HUBBARD-MODEL [J].
SCHULZ, HJ .
PHYSICAL REVIEW LETTERS, 1990, 64 (23) :2831-2834
[40]   FERMI GAS-MODEL OF ONE-DIMENSIONAL CONDUCTORS [J].
SOLYOM, J .
ADVANCES IN PHYSICS, 1979, 28 (02) :201-303