Development of OLED with high stability and luminance efficiency by co-doping methods for full color displays

被引:61
作者
Kanno, H [1 ]
Hamada, Y [1 ]
Takahashi, H [1 ]
机构
[1] Sanyo Elect Co Ltd, Display Devices Dept, Mat & Devices Dev Ctr BU, Osaka 5738534, Japan
关键词
active-matrix; carrier transport; co-dopant; emitting assist (EA) dopant; FPD; full color; NPB; organic electroluminescence; organic light-emitting diode (OLED); power consumption; rubrene; stability;
D O I
10.1109/JSTQE.2004.824076
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose co-doping systems in emission layers of red and green organic light-emitting diodes (OLEDs). The luminance-voltage, luminous and power efficiency-voltage characteristics, operational stability, and the energy bands of materials were measured. In red OLED devices, we propose an emitting assist (EA) dopant for better luminance efficiency and power efficiency with pure red emission and improved operational stability. The EA dopant (rubrene) did not emit itself but assisted the energy transfer from a host (Alq) to an emitting dopant (DCJTB). By doping rubrene, the luminance efficiency increased from 1.7 to 4.3 cd/A (from 0.6 to 1.9 lm/W) with chromaticity of (x = 0.64, y = 0.36) unchanged. An improved lifetime was also observed. In green OLED devices, we introduced hole transporting material (NPB) into an emission layer for better charge injection balance. The green devices with the emitting dopant (C545T) achieved the luminance efficiency of 8.5 cd/A compared with 6.9 cd/A without NPB. We studied the co-doping methods and use of this approach for active-matrix full color display. The power consumption of white emission at 100 cd/m(2) was reduced by 32%. The effectiveness of these co-doping methods was demonstrated for practical applications.
引用
收藏
页码:30 / 36
页数:7
相关论文
共 17 条
[1]   Electroluminescence mechanisms in organic light emitting devices employing a europium chelate doped in a wide energy gap bipolar conducting host [J].
Adachi, C ;
Baldo, MA ;
Forrest, SR .
JOURNAL OF APPLIED PHYSICS, 2000, 87 (11) :8049-8055
[2]   Degradation mechanism of small molecule-based organic light-emitting devices [J].
Aziz, H ;
Popovic, ZD ;
Hu, NX ;
Hor, AM ;
Xu, G .
SCIENCE, 1999, 283 (5409) :1900-1902
[3]   Operating lifetime of phosphorescent organic light emitting devices [J].
Burrows, PE ;
Forrest, SR ;
Zhou, TX ;
Michalski, L .
APPLIED PHYSICS LETTERS, 2000, 76 (18) :2493-2495
[4]   Improvement of efficiency and colour purity of red-dopant organic light-emitting diodes by energy levels matching with the host materials [J].
Chen, BJ ;
Lin, XQ ;
Cheng, LF ;
Lee, CS ;
Gambling, WA ;
Lee, ST .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2001, 34 (01) :30-35
[5]   Recent developments in the synthesis of red dopants for Alq3 hosted electroluminescence [J].
Chen, CH ;
Tang, CW ;
Shi, J ;
Klubek, KP .
THIN SOLID FILMS, 2000, 363 (1-2) :327-331
[6]   Organic light-emitting diodes with a bipolar transport layer [J].
Choong, VE ;
Shi, S ;
Curless, J ;
Shieh, CL ;
Lee, HC ;
So, F ;
Shen, J ;
Yang, J .
APPLIED PHYSICS LETTERS, 1999, 75 (02) :172-174
[7]   Electroluminescence in conjugated polymers [J].
Friend, RH ;
Gymer, RW ;
Holmes, AB ;
Burroughes, JH ;
Marks, RN ;
Taliani, C ;
Bradley, DDC ;
Dos Santos, DA ;
Brédas, JL ;
Lögdlund, M ;
Salaneck, WR .
NATURE, 1999, 397 (6715) :121-128
[8]   Red organic light-emitting diodes using an emitting assist dopant [J].
Hamada, Y ;
Kanno, H ;
Tsujioka, T ;
Takahashi, H ;
Usuki, T .
APPLIED PHYSICS LETTERS, 1999, 75 (12) :1682-1684
[9]  
HATWAR TK, 2000, P 10 INT WORKSH IN O, P31
[10]   Anode modification in organic light-emitting diodes by low-frequency plasma polymerization of CHF3 [J].
Hung, LS ;
Zheng, LR ;
Mason, MG .
APPLIED PHYSICS LETTERS, 2001, 78 (05) :673-675