Extinction of species in nonautonomous Lotka-Volterra systems

被引:56
作者
Ahmad, S [1 ]
机构
[1] Univ Texas, Div Math & Stat, San Antonio, TX 78249 USA
关键词
positive; component; system; extinction; exponentially;
D O I
10.1090/S0002-9939-99-05083-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A nonautonomous nth order Lotka-Volterra system of differential equations is considered. It is shown that if the coefficients satisfy certain inequalities, then any solution with positive components at some point will have all of its last n - 1 components tend to zero, while the first one will stabilize at a certain solution of a logistic equation.
引用
收藏
页码:2905 / 2910
页数:6
相关论文
共 14 条
[2]   Extinction in nonautonomous T-periodic competitive Lotka-Volterra system [J].
Ahmad, S ;
de Oca, FM .
APPLIED MATHEMATICS AND COMPUTATION, 1998, 90 (2-3) :155-166
[4]  
AHMAD S, IN PRESS NONLINEAR A
[5]  
AHMAD S, 1995, APPL ANAL, V57, P209
[6]   AN APPLICATION OF TOPOLOGICAL-DEGREE TO THE PERIODIC COMPETING SPECIES PROBLEM [J].
ALVAREZ, C ;
LAZER, AC .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1986, 28 :202-219
[7]   Coexistence states for periodic competitive Kolmogorov systems [J].
Battauz, A ;
Zanolin, F .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 219 (02) :179-199
[8]   Extinction in nonautonomous competitive Lotka-Volterra systems [J].
DeOca, FM ;
Zeeman, ML .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (12) :3677-3687
[9]   EXCHANGE OF EQUILIBRIA IN 2 SPECIES LOTKA-VOLTERRA COMPETITION MODELS [J].
GOPALSAMY, K .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1982, 24 (OCT) :160-170
[10]   GLOBAL ASYMPTOTIC STABILITY IN A PERIODIC LOTKA-VOLTERRA SYSTEM [J].
GOPALSAMY, K .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1985, 27 (JUL) :66-72