Protein threading by learning

被引:31
作者
Chang, I
Cieplak, M
Dima, RI
Maritan, A
Banavar, JR
机构
[1] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
[2] Pusan Natl Univ, Dept Phys, Pusan 609735, South Korea
[3] Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland
[4] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA
[5] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
[6] Ist Nazl Fis Mat, I-34014 Trieste, Italy
[7] Abdus Salam Int Ctr Theoret Phys, I-34014 Trieste, Italy
关键词
D O I
10.1073/pnas.241133698
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
By using techniques borrowed from statistical physics and neural networks, we determine the parameters, associated with a scoring function, that are chosen optimally to ensure complete success in threading tests in a training set of proteins. These parameters provide a quantitative measure of the propensities of amino acids to be buried or exposed and to be in a given secondary structure and are a good starting point for solving both the threading and design problems.
引用
收藏
页码:14350 / 14355
页数:6
相关论文
共 41 条