Feature engineering of machine-learning chemisorption models for catalyst design

被引:174
作者
Li, Zheng [1 ]
Ma, Xianfeng [1 ]
Xin, Hongliang [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Chem Engn, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
Machine learning; Artificial neural network; Feature engineering; Density functional theory; Electrochemical CO2 reduction; NEURAL-NETWORK POTENTIALS; OXYGEN REDUCTION REACTION; METAL-SURFACES; ADSORPTION; ELECTROREDUCTION; REACTIVITY; ATOMS;
D O I
10.1016/j.cattod.2016.04.013
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
We integrate machine-learning algorithms into the descriptor-based design approach for rapid screening of transition-metal catalysts. By engineering numerical representation of surface metal atoms using easily accessible features such as the local electronegativity and the effective coordination number that are dependent on the surroundings of an adsorption site, together with the intrinsic properties of active metal atoms including the electronegativity, ionic potential, and electron affinity, the machine-learning model optimized with similar to 250 ab initio adsorption energies on bimetallic alloys can capture complex, non-linear adsorbate/substrate interactions with the root mean squared errors (RMSE) similar to 0.12 eV. We applied the model to search for {100}-terminated multimetallic copper (Cu) catalysts for electrochemical CO2 reduction where the *CO adsorption energy represents an important efficiency metric. Compared with the traditional high-throughput computational and experimental trial-and-error approach, the machine-learning chemisorption models have great potential in accelerating the discovery of interesting catalytic materials. As the complexity of catalyst structures increases, new features will be needed to learn under-lying correlations and avoid introducing significant errors on top of the average DFT prediction errors expected with standard semi-local generalized gradient approximation (GGA) functionals. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:232 / 238
页数:7
相关论文
共 42 条
[1]   Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces [J].
Abild-Pedersen, F. ;
Greeley, J. ;
Studt, F. ;
Rossmeisl, J. ;
Munter, T. R. ;
Moses, P. G. ;
Skulason, E. ;
Bligaard, T. ;
Norskov, J. K. .
PHYSICAL REVIEW LETTERS, 2007, 99 (01)
[2]   Informatics guided discovery of surface structure-chemistry relationships in catalytic nanoparticles [J].
Andriotis, Antonis N. ;
Mpourmpakis, Giannis ;
Broderick, Scott ;
Rajan, Krishna ;
Datta, Somnath ;
Sunkara, Mahendra ;
Menon, Madhu .
JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (09)
[3]   Highly under-coordinated atoms at Rh surfaces: interplay of strain and coordination effects on core level shift [J].
Baraldi, A. ;
Bianchettin, L. ;
Vesselli, E. ;
de Gironcoli, S. ;
Lizzit, S. ;
Petaccia, L. ;
Zampieri, G. ;
Comelli, G. ;
Rosei, R. .
NEW JOURNAL OF PHYSICS, 2007, 9
[4]   Representing potential energy surfaces by high-dimensional neural network potentials [J].
Behler, J. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (18)
[5]   Constructing high-dimensional neural network potentials: A tutorial review [J].
Behler, Joerg .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2015, 115 (16) :1032-1050
[6]   Core level shifts of undercoordinated Pt atoms [J].
Bianchettin, Laura ;
Baraldi, Alessandro ;
de Gironcoli, Stefano ;
Vesselli, Erik ;
Lizzit, Silvano ;
Petaccia, Luca ;
Comelli, Giovanni ;
Rosei, Renzo .
JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (11)
[7]   The Bronsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis [J].
Bligaard, T ;
Norskov, JK ;
Dahl, S ;
Matthiesen, J ;
Christensen, CH ;
Sehested, J .
JOURNAL OF CATALYSIS, 2004, 224 (01) :206-217
[8]   Fast Prediction of Adsorption Properties for Platinum Nanocatalysts with Generalized Coordination Numbers [J].
Calle-Vallejo, Federico ;
Martinez, Jose I. ;
Garcia-Lastra, Juan M. ;
Sautet, Philippe ;
Loffreda, David .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (32) :8316-8319
[9]   Theoretical Considerations on the Electroreduction of CO to C2 Species on Cu(100) Electrodes [J].
Calle-Vallejo, Federico ;
Koper, Marc T. M. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (28) :7282-7285
[10]   SEMIEMPIRICAL, QUANTUM-MECHANICAL CALCULATION OF HYDROGEN EMBRITTLEMENT IN METALS [J].
DAW, MS ;
BASKES, MI .
PHYSICAL REVIEW LETTERS, 1983, 50 (17) :1285-1288