Non-convex potentials and microstructures in finite-strain plasticity

被引:243
作者
Carstensen, C
Hackl, K
Mielke, A
机构
[1] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[2] Ruhr Univ Bochum, Lehrstuhl Allgemeine Mech, D-44780 Bochum, Germany
[3] Univ Stuttgart, Math Inst A, D-70569 Stuttgart, Germany
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2002年 / 458卷 / 2018期
关键词
finite elastoplasticity; incremental formulation; variational problems; continuum mechanics; quasi-convexity; relaxation;
D O I
10.1098/rspa.2001.0864
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A mathematical model for a finite-strain elastoplastic evolution problem is proposed in which one time-step of an implicit time-discretization leads to generally non-convex minimization problems. The elimination of all internal variables enables a mathematical and numerical analysis of a reduced problem within the general framework of calculus of variations and nonlinear partial differential equations. The results for a single slip-system and von Mises plasticity illustrate that finite-strain elastoplasticity generates reduced problems with non-quasiconvex energy densities and so allows for non-attainment of energy minimizers and microstructures.
引用
收藏
页码:299 / 317
页数:19
相关论文
共 40 条
[1]   Adaptive numerical analysis in primal elastoplasticity with hardening [J].
Alberty, J ;
Carstensen, C ;
Zarrabi, D .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 171 (3-4) :175-204
[2]  
[Anonymous], 1976, Applications of methods of functional analysis to problems in mechanics
[3]   CRYSTAL PLASTICITY [J].
ASARO, RJ .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1983, 50 (4B) :921-934
[4]   PROPOSED EXPERIMENTAL TESTS OF A THEORY OF FINE MICROSTRUCTURE AND THE 2-WELL PROBLEM [J].
BALL, JM ;
JAMES, RD .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1992, 338 (1650) :389-450
[5]  
BALL JM, 1977, ARCH RATION MECH AN, V63, P337, DOI 10.1007/BF00279992
[6]   FINE PHASE MIXTURES AS MINIMIZERS OF ENERGY [J].
BALL, JM ;
JAMES, RD .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1987, 100 (01) :13-52
[7]  
Ciarlet P.G., 1988, Mathematical Elasticity Volume I: Three-Dimensional Elasticity, V20
[8]   THERMODYNAMICS WITH INTERNAL STATE VARIABLES [J].
COLEMAN, BD ;
GURTIN, ME .
JOURNAL OF CHEMICAL PHYSICS, 1967, 47 (02) :597-&
[9]  
Dacorogna B., 1982, LECT NOTES MATH, V922
[10]  
Dacorogna B., 1989, DIRECT METHODS CALCU