Molecular basis of transport and regulation in the Na+/betaine symporter BetP

被引:258
作者
Ressl, Susanne [1 ]
van Scheltinga, Anke C. Terwisscha [1 ]
Vonrhein, Clemens [2 ]
Ott, Vera [3 ]
Ziegler, Christine [1 ]
机构
[1] Max Planck Inst Biophys, Dept Biol Struct, D-60438 Frankfurt, Germany
[2] Global Phasing Ltd, Sheraton House, Cambridge CB3 0AX, England
[3] Univ Cologne, Inst Biochem, D-50937 Cologne, Germany
关键词
SOLUTES GLYCINE BETAINE; RENAL MEDULLARY CELLS; CORYNEBACTERIUM-GLUTAMICUM; COMPATIBLE SOLUTES; ORGANIC OSMOLYTES; NEUROTRANSMITTER TRANSPORTERS; SEROTONIN TRANSPORTER; OSMOTIC REGULATION; CRYSTAL-STRUCTURE; VOLUME REGULATION;
D O I
10.1038/nature07819
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Osmoregulated transporters sense intracellular osmotic pressure and respond to hyperosmotic stress by accumulation of osmolytes to restore normal hydration levels. Here we report the determination of the X-ray structure of a member of the family of betaine/choline/carnitine transporters, the Na+-coupled symporter BetP from Corynebacterium glutamicum, which is a highly effective osmoregulated uptake system for glycine betaine. Glycine betaine is bound in a tryptophan box occluded from both sides of the membrane with aromatic side chains lining the transport pathway. BetP has the same overall fold as three unrelated Na+-coupled symporters. Whereas these are crystallized in either the outward-facing or the inward-facing conformation, the BetP structure reveals a unique intermediate conformation in the Na+-coupled transport cycle. The trimeric architecture of BetP and the break in three-fold symmetry by the osmosensing C-terminal helices suggest a regulatory mechanism of Na+-coupled osmolyte transport to counteract osmotic stress.
引用
收藏
页码:47 / U1
页数:7
相关论文
共 59 条
[1]   Methods used in the structure determination of bovine mitochondrial F-1 ATPase [J].
Abrahams, JP ;
Leslie, AGW .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1996, 52 :30-42
[2]   Osmolyte trimethylamine-N-oxide does not affect the strength of hydrophobic interactions:: Origin of osmolyte compatibility [J].
Athawale, MV ;
Dordick, JS ;
Garde, S .
BIOPHYSICAL JOURNAL, 2005, 89 (02) :858-866
[3]   Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT [J].
Blanc, E ;
Roversi, P ;
Vonrhein, C ;
Flensburg, C ;
Lea, SM ;
Bricogne, G .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2004, 60 :2210-2221
[4]   Osmoresponsive proteins and functional assessment strategies in Saccharomyces cerevisiae [J].
Blomberg, A .
ELECTROPHORESIS, 1997, 18 (08) :1429-1440
[5]   Structure and energetics of the hydrogen-bonded backbone in protein folding [J].
Bolen, D. Wayne ;
Rose, George D. .
ANNUAL REVIEW OF BIOCHEMISTRY, 2008, 77 :339-362
[6]   Gaba transporter heterogeneity: Pharmacology and cellular localization [J].
Borden, LA .
NEUROCHEMISTRY INTERNATIONAL, 1996, 29 (04) :335-356
[7]   Intracellular organic osmolytes: Function and regulation [J].
Burg, Maurice B. ;
Ferraris, Joan D. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (12) :7309-7313
[8]   MOLECULAR-BASIS OF OSMOTIC REGULATION [J].
BURG, MB .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL FLUID AND ELECTROLYTE PHYSIOLOGY, 1995, 268 (06) :F983-F996
[9]   Phylogeny as a guide to structure and function of membrane transport proteins (Review) [J].
Chang, AB ;
Lin, R ;
Studley, WK ;
Tran, CV ;
Saier, MH .
MOLECULAR MEMBRANE BIOLOGY, 2004, 21 (03) :171-181
[10]  
Cowtan K., 1994, JOINT CCP4 ESF EACBM, V31, P34