The Disulfide Relay System of Mitochondria Is Required for the Biogenesis of Mitochondrial Ccs1 and Sod1

被引:72
作者
Reddehase, Silvia [1 ]
Grumbt, Barbara [1 ]
Neupert, Walter [1 ]
Hell, Kai [1 ]
机构
[1] Univ Munich, Adolf Butenandt Inst Physiol Chem, D-81377 Munich, Germany
关键词
mitochondria; Sod1; Ccs1; disulfide relay system; oxidative folding; INTERMEMBRANE SPACE PROTEINS; CYTOCHROME-C PEROXIDASE; COPPER CHAPERONE CCS; SUPEROXIDE-DISMUTASE; IMPORT PATHWAY; SULFHYDRYL OXIDASE; RESPIRATORY-CHAIN; CRYSTAL-STRUCTURE; MIA40; ERV1;
D O I
10.1016/j.jmb.2008.10.088
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cells protect themselves against oxygen stress and reactive oxygen species. An important enzyme in this process is superoxide dismutase, Sod1, which converts superoxide radicals into water and hydrogen peroxide. The biogenesis of functional Sod1 is dependent on its copper chaperone, Ccs1, which introduces a disulfide bond and a copper ion into Sod1. Ccs1 and Sod1 are present in the cytosol but are also found in the mitochondrial intermembrane space (IMS), the compartment between the outer and the inner membrane of mitochondria. Ccs1. mediates mitochondrial localization of Sod1. Here, we report on the biogenesis of the fractions of Ccs1. and Sod1 present in mitochondria of Saccharomyces cerevisiae. The IMS of mitochondria, harbors a disulfide relay system consisting of the import receptor Mia40 and the thiol oxidase Erv1, which drives the import of substrates with conserved cysteine residues arranged in typical twin Cx(3)C and twin Cx(9)C motifs. We show that depletion of Mia40 results in decreased levels of Ccs1 and Sod1. On the other hand, overexpression of Mia40 increased the mitochondrial fraction of both proteins. In addition, the import rates of Ccs1 were enhanced by increased levels of Mia40 and reduced upon depletion of Mia40. Mia40 forms mixed disulfides with Ccs1, suggesting a role of Mia40 for the generation of disulfide bonds in Ccs1. We suggest that the disulfide relay system transfers disulfide bonds via Mia40 to Ccs1, which then shuttles disulfide bonds to Sod1. In conclusion, the disulfide relay system is crucial for the import of Ccs1, thereby affecting the transport of Sod1, and it can control the distribution of Ccs1 and Sod1 between the IMS of mitochondria and the cytosol. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:331 / 338
页数:8
相关论文
共 47 条
[1]   Erv1 mediates the Mia40-dependent protein import pathway and provides a functional link to the respiratory chain by shuttling electrons to cytochrome c [J].
Allen, S ;
Balabanidou, V ;
Sideris, DP ;
Lisowsky, T ;
Tokatlidis, K .
JOURNAL OF MOLECULAR BIOLOGY, 2005, 353 (05) :937-944
[2]   Juxtaposition of the two distal CX3C motifs via intrachain disulfide bonding is essential for the folding of Tim10 [J].
Allen, S ;
Lu, H ;
Thornton, D ;
Tokatlidis, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (40) :38505-38513
[3]   Folding studies of Cox17 reveal an important interplay of cysteine oxidation and copper binding [J].
Arnesano, F ;
Balatri, E ;
Banci, L ;
Bertini, I ;
Winge, DR .
STRUCTURE, 2005, 13 (05) :713-722
[4]   The disulfide relay system of mitochondria is connected to the respiratory chain [J].
Bihlmaier, Karl ;
Mesecke, Nikola ;
Terziyska, Nadia ;
Bien, Melanie ;
Hell, Kai ;
Herrmann, Johannes M. .
JOURNAL OF CELL BIOLOGY, 2007, 179 (03) :389-395
[5]   ALS:: A disease of motor neurons and their nonneuronal neighbors [J].
Boillee, Sverine ;
Vande Velde, Christine ;
Cleveland, Don W. .
NEURON, 2006, 52 (01) :39-59
[6]   Multiple pathways for sorting mitochondrial precursor proteins [J].
Bolender, Natalia ;
Sickmann, Albert ;
Wagner, Richard ;
Meisinger, Chris ;
Pfanner, Nikolaus .
EMBO REPORTS, 2008, 9 (01) :42-49
[7]   The copper chaperone CCS directly interacts with copper/zinc superoxide dismutase [J].
Casareno, RLB ;
Waggoner, D ;
Gitlin, JD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (37) :23625-23628
[8]   Essential role of Mia40 in import and assembly of mitochondrial intermembrane space proteins [J].
Chacinska, A ;
Pfannschmidt, S ;
Wiedemann, N ;
Kozjak, V ;
Szklarz, LKS ;
Schulze-Specking, A ;
Truscott, KN ;
Guiard, B ;
Meisinger, C ;
Pfanner, N .
EMBO JOURNAL, 2004, 23 (19) :3735-3746
[9]   The copper chaperone for superoxide dismutase [J].
Culotta, VC ;
Klomp, LWJ ;
Strain, J ;
Casareno, RLB ;
Krems, B ;
Gitlin, JD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (38) :23469-23472
[10]   The role of the Tim8p-Tim13p complex in a conserved import pathway for mitochondrial polytopic inner membrane proteins [J].
Curran, SP ;
Leuenberger, D ;
Schmidt, E ;
Koehler, CM .
JOURNAL OF CELL BIOLOGY, 2002, 158 (06) :1017-1027