On the second real eigenvalue of nonnegative and Z-matrices

被引:10
作者
Friedland, S [1 ]
Nabben, R [1 ]
机构
[1] UNIV BIELEFELD,FAK MATH,D-33501 BIELEFELD,GERMANY
关键词
D O I
10.1016/S0024-3795(96)00033-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give bounds for the second real eigenvalue of nonegative matrices and Z-matrices. Furthermore, we establish upper bounds for the maximal spectral radii of principal submatrices of nonnegative matrices. Using these bounds, we prove that our inequality for the second real eigenvalue of the adjacency matrix of a connected regular graph improves a well-known bound for the second eigenvalue using Cheeger's inequality. (C) Elsevier Science Inc., 1997.
引用
收藏
页码:303 / 313
页数:11
相关论文
共 9 条
[1]  
CHEEGER J., 1970, Problems in Analysis, P195
[2]   A CLASSIFICATION OF MATRICES OF CLASS-Z [J].
FIEDLER, M ;
MARKHAM, TL .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 173 :115-124
[3]   AN UPPER BOUND FOR THE REAL PART OF NONMAXIMAL EIGENVALUES OF NONNEGATIVE IRREDUCIBLE MATRICES [J].
FRIEDLAND, S ;
GURVITS, L .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1994, 15 (03) :1015-1017
[4]   LOWER BOUNDS FOR THE 1ST EIGENVALUE OF CERTAIN M-MATRICES ASSOCIATED WITH GRAPHS [J].
FRIEDLAND, S .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 172 :71-84
[5]   RECONSTRUCTION OF A SYMMETRIC MATRIX FROM THE SPECTRAL DATA [J].
FRIEDLAND, S .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1979, 71 (02) :412-422
[6]  
Horn R. A., 1986, Matrix analysis
[7]  
KOTELJANSKII DM, 1963, AM MATH SOC TRANSL 2, V27, P9
[8]  
NABBEN R, IN PRESS LINEAR ALGE
[9]   BOUNDS ON THE SPECTRUM OF NONNEGATIVE MATRICES AND CERTAIN Z-MATRICES [J].
SMITH, RL .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1990, 129 :13-28