Formation of functional heterodimers between the TASK-1 and TASK-3 two-pore domain potassium channel subunits

被引:203
作者
Czirják, G [1 ]
Enyedi, P [1 ]
机构
[1] Semmelweis Univ, Dept Physiol, H-1444 Budapest, Hungary
关键词
D O I
10.1074/jbc.M107138200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The potassium channels in the two-pore domain family are widely expressed and regulate the excitability of neurons and other excitable cells. These channels have been shown to function as dimers, but heteromerization between the various channel subunits has not yet been reported. Here we demonstrate that two members of the TASK subfamily of potassium channels, TASK-1 and TASK-3, can form functional heterodimers when expressed in Xenopus laevis oocytes. To recognize the two TASK channel types, we took advantage of the higher sensitivity of TASK-1 over TASK-3 to physiological pH changes and the discriminating sensitivity of TASK-3 to the cationic dye ruthenium red. These features were clearly observed when the channels were expressed individually. However, when TASK-1 and TASK-3 were expressed together, the resulting current showed intermediate pH sensitivity and ruthenium red insensitivity (characteristic of TASK-1), indicating the formation of TASK-1/TASK-3 heterodimers. Expression of a tandem construct in which TASK-3 and TASK-1 were linked together yielded currents with features very similar to those observed when coexpressing the two channels. The tandem construct also responded to AT(1A) angiotensin II receptor stimulation with an inhibition that was weaker than the inhibition of homodimeric TASK-1 and greater than that shown by TASK-3. Expression of epitope-tagged channels in mammalian cells showed their primary presence in the plasma membrane consistent with their function in this location. Heteromerization of two-pore domain potassium channels may provide a greater functional diversity and additional means by which they can be regulated in their native tissues.
引用
收藏
页码:5426 / 5432
页数:7
相关论文
共 44 条
[1]   TREK-2, a new member of the mechanosensitive tandem-pore K+ channel family [J].
Bang, H ;
Kim, Y ;
Kim, D .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (23) :17412-17419
[2]   The role of Ca2+ stores in the muscarinic inhibition of the K+ current IK(SO) in neonatal rat cerebellar granule cells [J].
Boyd, DF ;
Millar, JA ;
Watkins, CS ;
Mathie, A .
JOURNAL OF PHYSIOLOGY-LONDON, 2000, 529 (02) :321-331
[3]   Adaptive regulation of neuronal excitability by a voltage-independent potassium conductance [J].
Brickley, SG ;
Revilla, V ;
Cull-Candy, SG ;
Wisden, W ;
Farrant, M .
NATURE, 2001, 409 (6816) :88-92
[4]   An oxygen-, acid- and anaesthetic-sensitive TASK-like background potassium channel in rat arterial chemoreceptor cells [J].
Buckler, KJ ;
Williams, BA ;
Honore, E .
JOURNAL OF PHYSIOLOGY-LONDON, 2000, 525 (01) :135-142
[5]   TWIK-2, a new weak inward rectifying member of the tandem pore domain potassium channel family [J].
Chavez, RA ;
Gray, AT ;
Zhao, BB ;
Kindler, CH ;
Mazurek, MJ ;
Mehta, Y ;
Forsayeth, JR ;
Yost, CS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (12) :7887-7892
[6]  
Cibulsky SM, 1999, J PHARMACOL EXP THER, V289, P1447
[7]   TASK (TWIK-related acid-sensitive K+ channel) is expressed in glomerulosa cells of rat adrenal cortex and inhibited by angiotensin II [J].
Czirják, G ;
Fischer, T ;
Spät, A ;
Lesage, F ;
Enyedi, P .
MOLECULAR ENDOCRINOLOGY, 2000, 14 (06) :863-874
[8]   Inhibition of TASK-1 potassium channel by phospholipase C [J].
Czirják, G ;
Petheo, GL ;
Spät, A ;
Enyedi, P .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2001, 281 (02) :C700-C708
[9]   Characterization of TASK-4, a novel member of the pH-sensitive, two-pore domain potassium channel family [J].
Decher, N ;
Maier, M ;
Dittrich, W ;
Gassenhuber, J ;
Brüggemann, A ;
Busch, AE ;
Steinmeyer, K .
FEBS LETTERS, 2001, 492 (1-2) :84-+
[10]   RUTHENIUM RED BLOCKS THE CAPSAICIN-INDUCED INCREASE IN INTRACELLULAR CALCIUM AND ACTIVATION OF MEMBRANE CURRENTS IN SENSORY NEURONS AS WELL AS THE ACTIVATION OF PERIPHERAL NOCICEPTORS INVITRO [J].
DRAY, A ;
FORBES, CA ;
BURGESS, GM .
NEUROSCIENCE LETTERS, 1990, 110 (1-2) :52-59