Interactions of Dimethoxy Ethane with Li2O2 Clusters and Likely Decomposition Mechanisms for Li-O2 Batteries

被引:71
作者
Assary, Rajeev S. [1 ]
Lau, Kah Chun [1 ]
Amine, Khalil [2 ]
Sun, Yang-Kook [3 ]
Curtiss, Larry A. [1 ,4 ]
机构
[1] Argonne Natl Labs, Div Mat Sci, Argonne, IL 60439 USA
[2] Argonne Natl Labs, Chem Sci & Engn Div, Argonne, IL 60439 USA
[3] Hanyang Univ, Dept Energy Engn, Seoul 133791, South Korea
[4] Argonne Natl Labs, Ctr Nanoscale Mat, Argonne, IL 60439 USA
关键词
LITHIUM-OXYGEN BATTERY; LI-AIR BATTERIES; ETHER; PRODUCTS; ELECTROLYTES; REACTIVITY; STABILITY; SOLVENTS;
D O I
10.1021/jp400229n
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
One of the major problems facing the successful development of Li-O-2 batteries is the decomposition of nonaqueous electrolytes, where the decomposition can be chemical or electrochemical during discharge or charge. In this paper, the decomposition pathways of dimethoxy ethane (DME) by the chemical reaction with the major discharge product; Li2O2, are investigated using theoretical methods. The computations were carried out using small Li2O2 clusters as models for potential sites on Li2O2 surfaces Both hydrogen and proton abstraction mechanisms were considered. The computations suggest that the most favorable decomposition of ether solvents occurs on certain sites on the lithium peroxide surfaces involving hydrogen abstraction followed by reaction with oxygen, which leads to oxidized species such as aldehydes and carboxylates as well as LiOH on the surface of the lithium peroxide. The most favorable site is a Li-O-Li site that may be present on small nanoparticles or as a defect site on a surface. The decomposition route initiated by the proton abstraction from the secondary position of DME by the singlet cluster (O-O site) requires a much larger enthalpy of activation, and subsequent reactions may require the presence of oxygen or superoxide. Thus, pathways involving proton abstraction are less likely than that involving hydrogen abstraction. This type of electrolyte decomposition (electrolyte with hydrogen atoms) may influence the cell performance including the crystal growth, nanomorphologies of the discharge products, and charge overpotential.
引用
收藏
页码:8041 / 8049
页数:9
相关论文
共 39 条
  • [1] A polymer electrolyte-based rechargeable lithium/oxygen battery
    Abraham, KM
    Jiang, Z
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (01) : 1 - 5
  • [2] The Effect of Oxygen Crossover on the Anode of a Li-O2 Battery using an Ether-Based Solvent: Insights from Experimental and Computational Studies
    Assary, Rajeev S.
    Lu, Jun
    Du, Peng
    Luo, Xiangyi
    Zhang, Xiaoyi
    Ren, Yang
    Curtiss, Larry A.
    Amine, Khalil
    [J]. CHEMSUSCHEM, 2013, 6 (01) : 51 - 55
  • [3] Computational Studies of Polysiloxanes: Oxidation Potentials and Decomposition Reactions
    Assary, Rajeev S.
    Curtiss, Larry A.
    Redfern, Paul C.
    Zhang, Zhengcheng
    Amine, Khalil
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (24) : 12216 - 12223
  • [4] Screening for Superoxide Reactivity in Li-O2 Batteries: Effect on Li2O2/LiOH Crystallization
    Black, Robert
    Oh, Si Hyoung
    Lee, Jin-Hyon
    Yim, Taeeun
    Adams, Brian
    Nazar, Linda F.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (06) : 2902 - 2905
  • [5] Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
  • [6] Predicting Autoxidation Stability of Ether- and Amide-Based Electrolyte Solvents for Li-Air Batteries
    Bryantsev, Vyacheslav S.
    Faglioni, Francesco
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2012, 116 (26) : 7128 - 7138
  • [7] Computational Study of the Mechanisms of Superoxide-Induced Decomposition of Organic Carbonate-Based Electrolytes
    Bryantsev, Vyacheslav S.
    Blanco, Mario
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (05): : 379 - 383
  • [8] UNIFIED APPROACH FOR MOLECULAR-DYNAMICS AND DENSITY-FUNCTIONAL THEORY
    CAR, R
    PARRINELLO, M
    [J]. PHYSICAL REVIEW LETTERS, 1985, 55 (22) : 2471 - 2474
  • [9] Li-O2 Battery with a Dimethylformamide Electrolyte
    Chen, Yuhui
    Freunberger, Stefan A.
    Peng, Zhangquan
    Barde, Fanny
    Bruce, Peter G.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (18) : 7952 - 7957
  • [10] A Critical Review of Li/Air Batteries
    Christensen, Jake
    Albertus, Paul
    Sanchez-Carrera, Roel S.
    Lohmann, Timm
    Kozinsky, Boris
    Liedtke, Ralf
    Ahmed, Jasim
    Kojic, Aleksandar
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (02) : R1 - R30