Bayesian Fusion for Indoor Positioning Using Bluetooth Fingerprints

被引:114
作者
Chen, Liang [1 ]
Pei, Ling [1 ]
Kuusniemi, Heidi [1 ]
Chen, Yuwei [1 ]
Kroger, Tuomo [1 ]
Chen, Ruizhi [1 ]
机构
[1] Finnish Geodet Inst, Dept Positioning & Nav, Kyrkslatt, Finland
关键词
Bayesian fusion; Indoor positioning; Fingerprints; Bluetooth; Motion model;
D O I
10.1007/s11277-012-0777-1
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
This paper studies the use of received signal strength indicators (RSSI) applied to fingerprinting method in a Bluetooth network for indoor positioning. A Bayesian fusion (BF) method is proposed to combine the statistical information from the RSSI measurements and the prior information from a motion model. Indoor field tests are carried out to verify the effectiveness of the method. Test results show that the proposed BF algorithm achieves a horizontal positioning accuracy of about 4.7m on the average, which is about 6 and 7% improvement when compared with Bayesian static estimation and a point Kalman filter method, respectively.
引用
收藏
页码:1735 / 1745
页数:11
相关论文
共 13 条
[1]  
Anastasi G, 2003, 23RD INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS WORKSHOPS, P480
[2]  
[Anonymous], 2010, SPEC BLUEG SYST, V7
[3]   Design and implementation of a Bluetooth signal strength based location sensing system [J].
Bandara, U ;
Hasegawa, M ;
Inoue, M ;
Morikawa, H ;
Aoyama, T .
RAWCON: 2004 IEEE RADIO AND WIRELESS CONFERENCE, PROCEEDINGS, 2004, :319-322
[4]  
Bargh M., 2008, ACM WORKSHOP MOBILE, DOI 10.1145/1410012.1410024
[5]  
Damian K., 2008, P 5 IEEE INT S WIR C, P638
[6]  
Gelman A., 2000, BAYESIAN DATA ANAL
[7]  
Honkavirta V., 2009, P 6 WORKSH POS NAV C
[8]  
Jevring M., 2008, P 1 INT WORKSH AUT A
[9]  
Kjærgaard MB, 2007, LECT NOTES COMPUT SC, V4718, P139
[10]   Bluetooth-based indoor proximity sensing for nursing context awareness [J].
Naya, F ;
Noma, H ;
Ohmura, R ;
Kogure, K .
NINTH IEEE INTERNATIONAL SYMPOSIUM ON WEARABLE COMPUTERS, PROCEEDINGS, 2005, :212-213