The Arabidopsis gene OSD1 (Omission of the Second Division) and its homolog UVI4 (UV-B-Insensitive 4) are negative regulators of anaphase-promoting complex/cyclosome (APC/C), a multisubunit ubiquitin E3 ligase that regulates the progression of cell cycles. Here we report the isolation of an activation tagging allele of OSD1 as an enhancer of a mutant of BON1 (BONZAI1), a negative regulator of plant immunity. Overexpression of OSD1 and UVI4 each leads to enhanced immunity to a bacterial pathogen, which is associated with increased expression of disease resistance (R) genes similar to the animal NOD1 receptor-like immune receptor genes. In addition, the reduction of function of one subunit of the APC complex APC10 exhibited a similar phenotype to that of overexpression of OSD1 or UVI4, indicating that altered APC function induces immune responses. Enhanced immune response induced by OSD1 overexpression is dependent on CYCB1;1, which is a degradation target of APC/C. It is also associated with up-regulation of R genes and is dependent on the R gene SNC1 (Suppressor of npr1-1, constitutive 1). Taken together, our findings reveal an unexpected link between cell cycle progression and plant immunity, suggesting that cell cycle mis-regulation could have an impact on expression of genes, including R genes, in plant immunity.