The role of glycine betaine in the protection of plants from stress: clues from transgenic plants

被引:556
作者
Sakamoto, A
Murata, N [1 ]
机构
[1] Natl Inst Basic Biol, Dept Regulat Biol, Okazaki, Aichi 4448585, Japan
[2] Hiroshima Univ, Grad Sch Sci, Dept Math & Life Sci, Plant Mol Biol Lab, Higashihiroshima 7398526, Japan
关键词
compatible solute; environmental stress; genetic engineering; glycine betaine; stress tolerance;
D O I
10.1046/j.0016-8025.2001.00790.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The acclimation of a plant to a constantly changing environment involves the accumulation of certain organic compounds of low molecular mass, known collectively as compatible solutes, in the cytoplasm. The evidence from numerous investigations of the physiology, genetics, biophysics and biochemistry Of Plants strongly suggests that glycine betaine (GB), an amphoteric quaternary amine, plays an important role as a compatible solute in plants under various types of environmental stress, such as high levels of salts and low temperature. Plant species vary in their capacity to synthesize GB and some plants, such as spinach and barley, accumulate relatively high levels of GB in their chloroplasts while others, such as Arabidopsis and tobacco, do not synthesize this compound. Genetic engineering has allowed the introduction into GB-deficient species of biosynthetic pathways to GB from both microorganisms and higher plants; this approach has facilitated investigations of the importance of GB in stress protection. In this review, we summarize recent progress in the genetic manipulation of the synthesis of GB, with special emphasis on the relationship between the protective effects of GB in vivo and those documented in vitro.
引用
收藏
页码:163 / 171
页数:9
相关论文
共 64 条
[1]   Transformation with a gene for choline oxidase enhances the cold tolerance of Arabidopsis during germination and early growth [J].
Alia ;
Hayashi, H ;
Chen, THH ;
Murata, N .
PLANT CELL AND ENVIRONMENT, 1998, 21 (02) :232-239
[2]   Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineering of the synthesis of glycinebetaine [J].
Alia ;
Hayashi, H ;
Sakamoto, A ;
Murata, N .
PLANT JOURNAL, 1998, 16 (02) :155-161
[3]   Enhanced tolerance to light stress of transgenic Arabidopsis plants that express the codA gene for a bacterial choline oxidase [J].
Alia ;
Kondo, Y ;
Sakamoto, A ;
Nonaka, H ;
Hayashi, H ;
Saradhi, PP ;
Chen, THH ;
Murata, N .
PLANT MOLECULAR BIOLOGY, 1999, 40 (02) :279-288
[4]   Stabilization of oxygen evolution and primary electron transport reactions in photosystem II against heat stress with glycinebetaine and sucrose [J].
Allakhverdiev, SI ;
Feyziev, YM ;
Ahmed, A ;
Hayashi, H ;
Aliev, JA ;
Klimov, VV ;
Murata, N ;
Carpentier, R .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY, 1996, 34 (2-3) :149-157
[5]   Betaine improves freezing tolerance in wheat [J].
Allard, F ;
Houde, M ;
Kröl, M ;
Ivanov, A ;
Huner, NPA ;
Sarhan, F .
PLANT AND CELL PHYSIOLOGY, 1998, 39 (11) :1194-1202
[6]  
[Anonymous], 1998, P INT WORKSH BREED B
[7]   PREFERENTIAL INTERACTIONS OF PROTEINS WITH SOLVENT COMPONENTS IN AQUEOUS AMINO-ACID SOLUTIONS [J].
ARAKAWA, T ;
TIMASHEFF, SN .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1983, 224 (01) :169-177
[8]   PHOTOINHIBITION OF PHOTOSYSTEM-2 - INACTIVATION, PROTEIN DAMAGE AND TURNOVER [J].
ARO, EM ;
VIRGIN, I ;
ANDERSSON, B .
BIOCHIMICA ET BIOPHYSICA ACTA, 1993, 1143 (02) :113-134
[9]   Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance [J].
Artus, NN ;
Uemura, M ;
Steponkus, PL ;
Gilmour, SJ ;
Lin, CT ;
Thomashow, MF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (23) :13404-13409
[10]   Transgenic approaches to increase dehydration-stress tolerance in plants [J].
Bajaj, S ;
Targolli, J ;
Liu, LF ;
Ho, THD ;
Wu, R .
MOLECULAR BREEDING, 1999, 5 (06) :493-503