Transgenic approaches to increase dehydration-stress tolerance in plants

被引:123
作者
Bajaj, S
Targolli, J
Liu, LF
Ho, THD
Wu, R [1 ]
机构
[1] Cornell Univ, Dept Mol Biol & Genet, Ithaca, NY 14853 USA
[2] Washington Univ, Dept Biol, St Louis, MO 63130 USA
[3] Natl Taiwan Univ, Dept Agron, Taipei, Taiwan
关键词
dehydration stress; detoxifying enzymes; lea genes; osmoprotectants; regulatory genes; transgenic approaches;
D O I
10.1023/A:1009660413133
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Plant productivity is strongly influenced by abiotic stress conditions induced by drought, high salt and low temperature. Plants respond to these conditions with an array of biochemical and physiological adaptations, at least some of which are the result of changes in gene expression. Transgenic approaches offer a powerful means of gaining valuable information to better understand the mechanisms governing stress tolerance. They also offer new opportunities to improve dehydration-stress tolerance in crops by incorporating a gene involved in stress protection into species that lack them. In this review, we discuss progress made towards understanding the molecular elements involved in dehydration-stress responses that have been used to improve salt or drought tolerance following several transgenic approaches. Further, we discuss various strategies being used to produce transgenic plants with increased tolerance to dehydration stress. These include the overproduction of enzymes responsible for biosynthesis of osmolytes, late-embryogenesis-abundant proteins and detoxification enzymes. At this time, there is a need for a careful appraisal of the genes to be selected and promoter elements to be used, because constitutive expression of these genes may not be desirable in all applications. In this context, the advantages and limitations of transgenic approaches currently being used are discussed together with the importance of using stress-inducible promoters and the introduction of multiple genes for the improvement of dehydration-stress tolerance.
引用
收藏
页码:493 / 503
页数:11
相关论文
共 67 条
[1]   Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression [J].
Abe, H ;
YamaguchiShinozaki, K ;
Urao, T ;
Iwasaki, T ;
Hosokawa, D ;
Shinozaki, K .
PLANT CELL, 1997, 9 (10) :1859-1868
[2]   Transformation with a gene for choline oxidase enhances the cold tolerance of Arabidopsis during germination and early growth [J].
Alia ;
Hayashi, H ;
Chen, THH ;
Murata, N .
PLANT CELL AND ENVIRONMENT, 1998, 21 (02) :232-239
[3]  
Allen GC, 1996, PLANT CELL, V8, P899, DOI 10.1105/tpc.8.5.899
[4]  
BESFORD RT, 1993, PLANTA, V189, P201, DOI 10.1007/BF00195077
[5]   Genetically engineered plants resistant to soil drying and salt stress: How to interpret osmotic relations? [J].
Blum, A ;
Munns, R ;
Passioura, JB ;
Turner, NC .
PLANT PHYSIOLOGY, 1996, 110 (04) :1051-1051
[6]   Strategies for engineering water-stress tolerance in plants [J].
Bohnert, HJ ;
Jensen, RG .
TRENDS IN BIOTECHNOLOGY, 1996, 14 (03) :89-97
[7]   MANGANESE SUPEROXIDE-DISMUTASE CAN REDUCE CELLULAR-DAMAGE MEDIATED BY OXYGEN RADICALS IN TRANSGENIC PLANTS [J].
BOWLER, C ;
SLOOTEN, L ;
VANDENBRANDEN, S ;
DERYCKE, R ;
BOTTERMAN, J ;
SYBESMA, C ;
VANMONTAGU, M ;
INZE, D .
EMBO JOURNAL, 1991, 10 (07) :1723-1732
[8]   Plant responses to water deficit [J].
Bray, EA .
TRENDS IN PLANT SCIENCE, 1997, 2 (02) :48-54
[9]   Over-expression of the oat arginine decarboxylase cDNA in transgenic rice (Oryza sativa L.) affects normal development patterns in vitro and results in putrescine accumulation in transgenic plants [J].
Capell, T ;
Escobar, C ;
Liu, H ;
Burtin, D ;
Lepri, O ;
Christou, P .
THEORETICAL AND APPLIED GENETICS, 1998, 97 (1-2) :246-254
[10]   Plants ectopically expressing the iron-binding protein, ferritin, are tolerant to oxidative damage and pathogens [J].
Deák, M ;
Horváth, GV ;
Davletova, S ;
Török, K ;
Sass, L ;
Vass, I ;
Barna, B ;
Király, Z ;
Dudits, D .
NATURE BIOTECHNOLOGY, 1999, 17 (02) :192-196