Dynamic binding of PKA regulatory subunit RIα

被引:26
作者
Gullingsrud, J [1 ]
Kim, C
Taylor, SS
McCammon, JA
机构
[1] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Howard Hughes Med Inst, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Pharmacol, La Jolla, CA 92093 USA
关键词
D O I
10.1016/j.str.2005.09.019
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent crystal structures have revealed that regulatory subunit Rim of PKA undergoes a dramatic conformational change upon complex formation with the catalytic subunit. Molecular dynamics studies were initiated to elucidate the contributions of intrinsic conformational flexibility and interactions with the catalytic subunit in formation and stabilization of the complex. Simulations of a single Rim nucleotide binding domain (NBD), missing cAMP, showed that its C helix spontaneously occupies two distinct conformations: either packed against the nucleotide binding domain as in its cAMP bound structure, or extended into an intermediate form resembling that of the holoenzyme structure. C helix extension was not seen in a simulation of either Rim NBD. In a model complex containing both NBDs and the catalytic subunit, well-conserved residues at the interface between the NBDs in the cAMP bound form were found to stabilize the complex through contacts with the catalytic subunit. The model structure is consistent with available experimental data.
引用
收藏
页码:141 / 149
页数:9
相关论文
共 40 条
[1]   Identification of the protein kinase A regulatory RIα-catalytic subunit interface by amide H/2H exchange and protein docking [J].
Anand, GS ;
Law, D ;
Mandell, JG ;
Snead, AN ;
Tsigelny, I ;
Taylor, SS ;
Ten Eyck, LF ;
Komives, EA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (23) :13264-13269
[2]   On the calculation of entropy from covariance matrices of the atomic fluctuations [J].
Andricioaei, I ;
Karplus, M .
JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (14) :6289-6292
[3]   Two different proteins that compete for binding to thrombin have opposite kinetic and thermodynamic profiles [J].
Baerga-Ortiz, A ;
Bergqvist, S ;
Mandell, JG ;
Komives, EA .
PROTEIN SCIENCE, 2004, 13 (01) :166-176
[4]   The cAMP binding domain: An ancient signaling module [J].
Berman, HM ;
Ten Eyck, LF ;
Goodsell, DS ;
Haste, NM ;
Kornev, A ;
Taylor, SS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (01) :45-50
[5]   Conformational dynamics of the F1-ATPase β-subunit:: A molecular dynamics study [J].
Böckmann, RA ;
Grubmüller, H .
BIOPHYSICAL JOURNAL, 2003, 85 (03) :1482-1491
[6]   Acetylcholinesterase: Enhanced fluctuations and alternative routes to the active site in the complex with fasciculin-2 [J].
Bui, JM ;
Tai, K ;
McCammon, JA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (23) :7198-7205
[7]   Classification and phylogenetic analysis of the cAMP-dependent protein kinase regulatory subunit family [J].
Canaves, JM ;
Taylor, SS .
JOURNAL OF MOLECULAR EVOLUTION, 2002, 54 (01) :17-29
[8]   A graph-theory algorithm for rapid protein side-chain prediction [J].
Canutescu, AA ;
Shelenkov, AA ;
Dunbrack, RL .
PROTEIN SCIENCE, 2003, 12 (09) :2001-2014
[9]   Molecular basis for regulatory subunit diversity in cAMP-dependent protein kinase:: Crystal structure of the type IIβ regulatory subunit [J].
Diller, TC ;
Madhusudan ;
Xuong, NH ;
Taylor, SS .
STRUCTURE, 2001, 9 (01) :73-82
[10]   Induced fit and the entropy of structural adaptation in the complexation of CAP and λ-repressor with cognate DNA sequences [J].
Dixit, SB ;
Andrews, DQ ;
Beveridge, DL .
BIOPHYSICAL JOURNAL, 2005, 88 (05) :3147-3157