Lithium iron phosphate with high-rate capability synthesized through hydrothermal reaction in glucose solution

被引:80
作者
Liang, Guangchuan [1 ]
Wang, Li [1 ]
Ou, Xiuqin [1 ]
Zhao, Xia [1 ]
Xu, Shengzhao [1 ]
机构
[1] Hebei Univ Technol, Inst Power Source & Ecomat Sci, Tianjin 300130, Peoples R China
关键词
Lithium iron phosphate; Hydrothermal reaction; Glucose; Carbon coated; Cathode material;
D O I
10.1016/j.jpowsour.2008.02.056
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon-coated lithium iron phosphate (LiFePO4/C) was hydrothermally synthesized from commercial LiOH, FeSO4 and H3PO4 as raw materials and glucose as carbon precursor in aqueous solution at 180 degrees C for 6h followed by being fired at 750 degrees C for 6h. The samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and constant current charge-discharge cycling test. The results show that the synthesized powders are in situ coated with carbon precursor produced from glucose. At ambient temperature (25 +/- 2 degrees C), the specific discharge capacities are 154 mAh g(-1) at 0.2 C and 136 mAh g(-1) at 5 C rate, and the cycling capacity retention rate reaches 98% over 90 cycles. The excellent electrochemical performance can be correlated with the in situ formation of carbon precursor/carbon, thus leading to the even distribution of carbon and the enhancement of conductibility of individual grains. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:538 / 542
页数:5
相关论文
共 23 条
[1]   The source of first-cycle capacity loss in LiFePO4 [J].
Andersson, AS ;
Thomas, JO .
JOURNAL OF POWER SOURCES, 2001, 97-8 :498-502
[2]   Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique [J].
Arnold, G ;
Garche, J ;
Hemmer, R ;
Ströbele, S ;
Vogler, C ;
Wohlfahrt-Mehrens, A .
JOURNAL OF POWER SOURCES, 2003, 119 :247-251
[3]   Hydrothermal synthesis of lithium iron phosphate [J].
Chen, Jiajun ;
Whittingham, M. Stanley .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (05) :855-858
[4]   Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density [J].
Chen, ZH ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (09) :A1184-A1189
[5]   Synthesis of olivine-type LiFePO4 by emulsion-drying method [J].
Cho, TH ;
Chung, HT .
JOURNAL OF POWER SOURCES, 2004, 133 (02) :272-276
[6]   A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode [J].
Croce, F ;
D'Epifanio, A ;
Hassoun, J ;
Deptula, A ;
Olczac, T ;
Scrosati, B .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2002, 5 (03) :A47-A50
[7]   Electrochemical and electrical properties of Nb- and/or C-containing LiFePO4 composites [J].
Delacourt, C ;
Wurm, C ;
Laffont, L ;
Leriche, JB ;
Masquelier, C .
SOLID STATE IONICS, 2006, 177 (3-4) :333-341
[8]   Identification of surface impurities on LiFePO4 particles prepared by a hydrothermal process [J].
Dokko, K ;
Shiraishi, K ;
Kanamura, K .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (11) :A2199-A2202
[9]   Electrochemical properties of LiFePO4 prepared via hydrothermal route [J].
Dokko, Kaoru ;
Koizumi, Shohei ;
Sharaishi, Keisuke ;
Kanamura, Kiyoshi .
JOURNAL OF POWER SOURCES, 2007, 165 (02) :656-659
[10]   Chemistry and electrochemistry of composite LiFePO4 materials for secondary lithium batteries [J].
Franger, S. ;
Benoit, C. ;
Bourbon, C. ;
Le Cras, F. .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2006, 67 (5-6) :1338-1342