A novel cyclohexene derivative, ethyl (6R)-6-[N-(2-chloro-4-fluorophenyl) sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), selectively inhibits toll-like receptor 4-mediated cytokine production through suppression of intracellular signaling

被引:295
作者
Ii, M
Matsunaga, N
Hazeki, K
Nakamura, K
Takashima, K
Seya, T
Hazeki, O
Kitazaki, T
Iizawa, Y
机构
[1] Takeda Pharmaceut Co Ltd, Pharmacol Res Lab 1, Div Pharmaceut Res, Yodogawa Ku, Osaka 5328686, Japan
[2] Hiroshima Univ, Grad Sch Biomed Sci, Div Mol Med Sci, Higashihiroshima 724, Japan
[3] Hokkaido Univ, Grad Sch Med, Dept Microbiol & Immunol, Sapporo, Hokkaido, Japan
关键词
D O I
10.1124/mol.105.019695
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Proinflammatory mediators such as cytokines and NO play pivotal roles in various inflammatory diseases. To combat inflammatory diseases successfully, regulation of proinflammatory mediator production would be a critical process. In the present study, we investigated the in vitro effects of ethyl(6R)-6-[N-(2-chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), a novel small molecule cytokine production inhibitor, and its mechanism of action. In RAW264.7 cells and mouse peritoneal macrophages, TAK-242 suppressed lipopolysaccharide (LPS)-induced production of NO, tumor necrosis factor-alpha ( TNF-alpha), and interleukin (IL)-6, with 50% inhibitory concentration (IC50) of 1.1 to 11 nM. TAK-242 also suppressed the production of these cytokines from LPS-stimulated human peripheral blood mononuclear cells (PBMCs) at IC50 values from 11 to 33 nM. In addition, the inhibitory effects on the LPS-induced IL-6 and IL-12 production were similar in human PBMCs, monocytes, and macrophages. TAK-242 inhibited mRNA expression of IL-6 and TNF-alpha induced by LPS and interferon-gamma in RAW264.7 cells. The phosphorylation of mitogen-activated protein kinases induced by LPS was also inhibited in a concentration-dependent manner. However, TAK-242 did not antagonize the binding of LPS to the cells. It is noteworthy that TAK-242 suppressed the cytokine production induced by Toll-like receptor (TLR) 4 ligands, but not by ligands for TLR2, -3, and -9. In addition, IL-1 beta-induced IL-8 production from human PBMCs was not markedly affected by TAK-242. These data suggest that TAK-242 suppresses the production of multiple cytokines by selectively inhibiting TLR4 intracellular signaling. Finally, TAK-242 is a novel small molecule TLR4 signaling inhibitor and could be a promising therapeutic agent for inflammatory diseases, whose pathogenesis involves TLR4.
引用
收藏
页码:1288 / 1295
页数:8
相关论文
共 43 条
[1]   Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3 [J].
Alexopoulou, L ;
Holt, AC ;
Medzhitov, R ;
Flavell, RA .
NATURE, 2001, 413 (6857) :732-738
[2]  
Byrd-Leifer CA, 2001, EUR J IMMUNOL, V31, P2448, DOI 10.1002/1521-4141(200108)31:8&lt
[3]  
2448::AID-IMMU2448&gt
[4]  
3.0.CO
[5]  
2-N
[6]   E5531, A PURE ENDOTOXIN ANTAGONIST OF HIGH POTENCY [J].
CHRIST, WJ ;
ASANO, O ;
ROBIDOUX, ALC ;
PEREZ, M ;
WANG, YA ;
DUBUC, GR ;
GAVIN, WE ;
HAWKINS, LD ;
MCGUINNESS, PD ;
MULLARKEY, MA ;
LEWIS, MD ;
KISHI, Y ;
KAWATA, T ;
BRISTOL, JR ;
ROSE, JR ;
ROSSIGNOL, DP ;
KOBAYASHI, S ;
HISHINUMA, L ;
KIMURA, A ;
ASAKAWA, N ;
KATAYAMA, K ;
YAMATSU, I .
SCIENCE, 1995, 268 (5207) :80-83
[7]   Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex - Transfer from CD14 to TLR4 and MD-2 [J].
Correia, JD ;
Soldau, K ;
Christen, U ;
Tobias, PS ;
Ulevitch, RJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (24) :21129-21135
[8]   Adaptor usage and Toll-like receptor signaling specificity [J].
Dunne, A ;
O'Neill, LAJ .
FEBS LETTERS, 2005, 579 (15) :3330-3335
[9]  
EASTGATE JA, 1988, LANCET, V2, P706
[10]  
Ellingsen EA, 2002, MED SCI MONITOR, V8, pBR149