BAX translocation is a critical event in neuronal apoptosis: Regulation by neuroprotectants, BCL-2, and caspases

被引:276
作者
Putcha, GV [1 ]
Deshmukh, M [1 ]
Johnson, EM [1 ]
机构
[1] Washington Univ, Sch Med, Dept Mol Biol & Pharmacol, St Louis, MO 63110 USA
关键词
apoptosis; cAMP; cell death; depolarization; neuron; neuroprotective agents;
D O I
10.1523/JNEUROSCI.19-17-07476.1999
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Members of the BCL-2 family of proteins either promote or repress programmed cell death. Here we report that neonatal sympathetic neurons undergoing apoptosis after nerve growth factor (NGF) deprivation exhibited a protein synthesis-dependent, caspase-independent subcellular redistribution of BAX from cytosol to mitochondria, followed by a loss of mitochondrial cytochrome c and cell death. Treatment with elevated concentrations of the neuroprotectants KCl or cAMP at the time of deprivation prevented BAX translocation and cytochrome c release. However, administration of KCl or cAMP 12 hr after NGF withdrawal acutely prevented loss of mitochondrial cytochrome c, but not redistribution of BAX; rescue with NGF acutely prevented both events. Overexpression of Bcl-2 neither altered the normal subcellular localization of BAX nor prevented its redistribution with deprivation but did inhibit the subsequent release of cytochrome c, caspase activation, and cell death. Bcl-2 overexpression did not prevent cell death induced by cytoplasmic microinjection of cytochrome c into NGF-deprived competent-to-die neurons. These observations suggest that the subcellular redistribution of BAX is a critical event in neuronal apoptosis induced by trophic factor deprivation. BCL-2 acts primarily, if not exclusively, at the level of mitochondria to prevent BAX-mediated cytochrome c release, whereas NGF, KCl, or cAMP may abort the apoptotic program at multiple checkpoints.
引用
收藏
页码:7476 / 7485
页数:10
相关论文
共 58 条
[11]   THE DEATH PROGRAM IN CULTURED SYMPATHETIC NEURONS CAN BE SUPPRESSED AT THE POSTTRANSLATIONAL LEVEL BY NERVE GROWTH-FACTOR, CYCLIC-AMP, AND DEPOLARIZATION [J].
EDWARDS, SN ;
BUCKMASTER, AE ;
TOLKOVSKY, AM .
JOURNAL OF NEUROCHEMISTRY, 1991, 57 (06) :2140-2143
[12]   Bax-induced cytochrome C release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions [J].
Eskes, R ;
Antonsson, B ;
Osen-Sand, A ;
Montessuit, S ;
Richter, C ;
Sadoul, R ;
Mazzei, G ;
Nichols, A ;
Martinou, JC .
JOURNAL OF CELL BIOLOGY, 1998, 143 (01) :217-224
[13]   Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-xL [J].
Finucane, DM ;
Bossy-Wetzel, E ;
Waterhouse, NJ ;
Cotter, TG ;
Green, DR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (04) :2225-2233
[14]  
FRANKLIN JL, 1995, J NEUROSCI, V15, P643
[15]   Regulated targeting of BAX to mitochondria [J].
Goping, IS ;
Gross, A ;
Lavoie, JN ;
Nguyen, M ;
Jemmerson, R ;
Roth, K ;
Korsmeyer, SJ ;
Shore, GC .
JOURNAL OF CELL BIOLOGY, 1998, 143 (01) :207-215
[17]   ROLE OF BCL-2 IN THE SURVIVAL AND FUNCTION OF DEVELOPING AND MATURE SYMPATHETIC NEURONS [J].
GREENLUND, LJS ;
KORSMEYER, SJ ;
JOHNSON, EM .
NEURON, 1995, 15 (03) :649-661
[18]   Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis [J].
Gross, A ;
Jockel, J ;
Wei, MC ;
Korsmeyer, SJ .
EMBO JOURNAL, 1998, 17 (14) :3878-3885
[19]   Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death [J].
Gross, A ;
Yin, XM ;
Wang, K ;
Wei, MC ;
Jockel, J ;
Millman, C ;
Erdjument-Bromage, H ;
Tempst, P ;
Korsmeyer, SJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (02) :1156-1163
[20]   Differential requirement for Caspase 9 in apoptotic pathways in vivo [J].
Hakem, R ;
Hakem, A ;
Duncan, GS ;
Henderson, JT ;
Woo, M ;
Soengas, MS ;
Elia, A ;
de la Pompa, JL ;
Kagi, D ;
Khoo, W ;
Potter, J ;
Yoshida, R ;
Kaufman, SA ;
Lowe, SW ;
Penninger, JM ;
Mak, TW .
CELL, 1998, 94 (03) :339-352