Attraction of like-charged macroions in the strong-coupling limit

被引:81
作者
Naji, A
Netz, RR
机构
[1] Univ Munich, Sekt Phys, D-80333 Munich, Germany
[2] Max Planck Inst Colloids & Interfaces, D-14476 Golm, Germany
关键词
D O I
10.1140/epje/e2004-00039-x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Like-charged macroions attract each other as a result of strong electrostatic correlations in the presence of multivalent counterions or at low temperatures. We investigate the effective electrostatic interaction between i) two like-charged rods and ii) two like-charged spheres using the recently introduced strong-coupling theory, which becomes asymptotically exact in the limit of large coupling parameter (i.e. for large counterion valency, low temperature, or high surface charge density on macroions). In contrast to previous applications of the strong-coupling theory, we deal with curved surfaces and an additional parameter, referred to as Manning parameter, is introduced, which measures the ratio between the radius of curvature of macroions to the Gouy-Chapman length. This parameter, together with the size of the confining box enclosing the two macroions and their neutralizing counterions, controls the counterion-condensation process that directly affects the effective interactions. For sufficiently large Manning parameters (weakly-curved surfaces), we find a strong long-ranged attraction between two macroions that form a closely-packed bound state with small surface-to-surface separation of the order of the counterion diameter in agreement with recent simulations results. For small Manning parameters (highly-curved surfaces), on the other hand, the equilibrium separation increases and the macroions unbind from each other as the confinement volume increases to infinity. This occurs via a continuous universal unbinding transition for two charged rods at a threshold Manning parameter of xi(c) = 2/3, while the transition is strongly discontinuous for spheres because of a pronounced potential barrier at intermediate distances. Unlike the cylindrical case, the attractive forces between spheres disappear slowly for increasing confinement volume due to the complete de-condensation of counterions. Scaling arguments suggest that for moderate values of coupling parameter, strong-coupling predictions remain valid for sufficiently small surface-to-surface separations.
引用
收藏
页码:43 / 59
页数:17
相关论文
共 93 条
[21]   Counterion correlations and attraction between like-charged macromolecules [J].
Diehl, A. ;
Carmona, H.A. ;
Levin, Y. .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (1 I) :1-011804
[22]   Density-functional theory for attraction between like-charged plates [J].
Diehl, A ;
Tamashiro, MN ;
Barbosa, MC ;
Levin, Y .
PHYSICA A, 1999, 274 (3-4) :433-445
[23]   Collapse of Stiff polyelectrolytes due to counterion fluctuations [J].
Golestanian, R ;
Kardar, M ;
Liverpool, TB .
PHYSICAL REVIEW LETTERS, 1999, 82 (22) :4456-4459
[24]   ION CONDENSATION IN SALT-FREE DILUTE POLYELECTROLYTE SOLUTIONS [J].
GONZALEZMOZUELOS, P ;
DELACRUZ, MO .
JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (08) :3145-3157
[25]   Interactions between charged spheres in divalent counterion solution [J].
Gronbech-Jensen, N ;
Beardmore, KM ;
Pincus, P .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1998, 261 (1-2) :74-81
[26]   Counterion-induced attraction between rigid polyelectrolytes [J].
GronbechJensen, N ;
Mashl, RJ ;
Bruinsma, RF ;
Gelbart, WM .
PHYSICAL REVIEW LETTERS, 1997, 78 (12) :2477-2480
[27]   ELECTRICAL DOUBLE-LAYER FORCES - A MONTE-CARLO STUDY [J].
GULDBRAND, L ;
JONSSON, B ;
WENNERSTROM, H ;
LINSE, P .
JOURNAL OF CHEMICAL PHYSICS, 1984, 80 (05) :2221-2228
[28]   A MONTE-CARLO SIMULATION STUDY OF ELECTROSTATIC FORCES BETWEEN HEXAGONALLY PACKED DNA DOUBLE HELICES [J].
GULDBRAND, L ;
NILSSON, LG ;
NORDENSKIOLD, L .
JOURNAL OF CHEMICAL PHYSICS, 1986, 85 (11) :6686-6698
[29]  
H BY, 2001, PHYS REV E, V64
[30]   The nature of attraction between like-charged rods - Reply [J].
Ha, BY ;
Liu, AJ .
PHYSICAL REVIEW LETTERS, 1999, 83 (13) :2681-2681