Use of Forster's resonance energy transfer microscopy to study lipid rafts

被引:99
作者
Rao, M
Mayor, S
机构
[1] Raman Res Inst, Bangalore 560080, Karnataka, India
[2] Natl Ctr Biol Sci, TIFR, Bangalore 560065, Karnataka, India
来源
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH | 2005年 / 1746卷 / 03期
基金
英国惠康基金;
关键词
raft; GPI-anchored protein; homo-FRET; hetero-FRET; microscopy; active organization;
D O I
10.1016/j.bbamcr.2005.08.002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Rafts in cell membranes have been a subject of much debate and many models have been proposed for their existence and functional significance. Recent studies using Forster's resonance energy transfer (FRET) microscopy have provided one of the first glimpses into the organization of putative raft components in living cell membranes. Here we discuss how and why FRET microscopy provides an appropriate non-invasive methodology to examine organization of raft components in cell membranes; a combination of homo and hetero-FRET microscopy in conjunction with detailed theoretical analyses are necessary for characterizing structures at nanometre scales. Implications of the physical characteristics of the organization of GPI-anchored proteins in cell membranes suggest new models of lipid-based assemblies in cell membranes based on active principles. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:221 / 233
页数:13
相关论文
共 79 条
[1]  
Agranovich V.M., 1982, Electronic Excitation Energy Transfer in Condensed Matter
[2]   Cell biology - A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains [J].
Anderson, RGW ;
Jacobson, K .
SCIENCE, 2002, 296 (5574) :1821-1825
[3]   Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell [J].
Bastiaens, PIH ;
Squire, A .
TRENDS IN CELL BIOLOGY, 1999, 9 (02) :48-52
[4]   Seeing the wood through the trees: A review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence [J].
Billinton, N ;
Knight, AW .
ANALYTICAL BIOCHEMISTRY, 2001, 291 (02) :175-197
[5]   Receptor clustering as a cellular mechanism to control sensitivity [J].
Bray, D ;
Levin, MD ;
Morton-Firth, CJ .
NATURE, 1998, 393 (6680) :85-88
[6]  
BRIGHT GR, 1989, METHOD CELL BIOL, V30, P157
[7]   Structure and function of sphingolipid- and cholesterol-rich membrane rafts [J].
Brown, DA ;
London, E .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (23) :17221-17224
[8]   Integrin avidity regulation: are changes in affinity and conformation underemphasized? [J].
Carman, CV ;
Springer, TA .
CURRENT OPINION IN CELL BIOLOGY, 2003, 15 (05) :547-556
[9]   ORIENTATIONAL FREEDOM OF MOLECULAR PROBES - ORIENTATION FACTOR IN INTRA-MOLECULAR ENERGY-TRANSFER [J].
DALE, RE ;
EISINGER, J ;
BLUMBERG, WE .
BIOPHYSICAL JOURNAL, 1979, 26 (02) :161-193
[10]   Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: Boundaries and composition of lipid rafts [J].
de Almeida, RFM ;
Fedorov, A ;
Prieto, M .
BIOPHYSICAL JOURNAL, 2003, 85 (04) :2406-2416