The conserved kinases CDK-1, GSK-3, KIN-19, and MBK-2 promote OMA-1 destruction to regulate the oocyte-to-embryo transition in C. elegans

被引:82
作者
Shirayama, M
Soto, MC
Ishidate, T
Kim, S
Nakamura, K
Bei, YX
van den Heuvel, S
Mello, CC
机构
[1] Univ Massachusetts, Sch Med, Program Mol Med, Worcester, MA 01605 USA
[2] Univ Massachusetts, Sch Med, Howard Hughes Med Inst, Worcester, MA 01605 USA
[3] UMDNJ, RWJMS, Dept Pathol, Piscataway, NJ 08854 USA
[4] Univ Utrecht, NL-3584 CH Utrecht, Netherlands
基金
美国国家卫生研究院;
关键词
D O I
10.1016/j.cub.2005.11.070
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: At the onset of embryogenesis, key developmental regulators called determinants are activated asymmetrically to specify the body axes and tissue layers. In C. elegrans, this process is regulated in part by a conserved family of CCCH-type zinc finger proteins that specify the fates of early embryonic cells. The asymmetric localization of these and other determinants is regulated in early embryos through motor-dependent physical translocation as well as selective proteolysis. Results: We show here that the CCCH-type zinc finger protein OMA-1 serves as a nexus for signals that regulate the transition from oogenesis to embryogenesis. While OMA-1 promotes oocyte maturation during meiosis, destruction of OMA-1 is needed during the first cell division for the initiation of ZIF-1-dependent proteolysis of cell-fate determinants. Mutations in four conserved protein kinase genes-mbk-2/Dyrk, kin-19/CK1 alpha, gsk-3, and cdk-1/CDC2-cause stabilization of OMA-1 protein, and their phenotypes are partially suppressed by an oma-1 loss-of-function mutation. OMA-1 proteolysis also depends on Cyclin B3 and on a ZIF-1-independent CUL-2-based E3 ubiquitin ligase complex, as well as the CUL-2-interacting protein ZYG-11 1 and the Skp1-related proteins SKR-1 and SKR-2. Conclusions: Our findings suggest that a CDK1/Cyclin B3-dependent activity links OMA-1 proteolysis to completion of the first cell cycle and support a model in which OMA-1 functions to prevent the premature activation of cell-fate determinants until after they are asymmetrically partitioned during the first mitosis.
引用
收藏
页码:47 / 55
页数:9
相关论文
共 40 条
[1]   SRC-1 and Wnt signaling act together to specify endoderm and to control cleavage orientation in early C-elegans embryos [J].
Bei, YX ;
Hogan, J ;
Berkowitz, LA ;
Soto, M ;
Rocheleau, CE ;
Pang, KM ;
Collins, J ;
Mello, CC .
DEVELOPMENTAL CELL, 2002, 3 (01) :113-125
[2]   Crystal structure and mutational analysis the human CDK2 kinase complex with cell cycle-regulatory protein CksHs1 [J].
Bourne, Y ;
Watson, MH ;
Hickey, MJ ;
Holmes, W ;
Rocque, W ;
Reed, SI ;
Tainer, JA .
CELL, 1996, 84 (06) :863-874
[3]   THE MATERNAL GENE SKN-1 ENCODES A PROTEIN THAT IS DISTRIBUTED UNEQUALLY IN EARLY C-ELEGANS EMBRYOS [J].
BOWERMAN, B ;
DRAPER, BW ;
MELLO, CC ;
PRIESS, JR .
CELL, 1993, 74 (03) :443-452
[4]  
Boxem M, 1999, DEVELOPMENT, V126, P2227
[5]   Exclusion of germ plasm proteins from somatic lineages by cullin-dependent degradation [J].
DeRenzo, C ;
Reese, KJ ;
Seydoux, G .
NATURE, 2003, 424 (6949) :685-689
[6]   Two zinc finger proteins, OMA-1 and OMA-2, are redundantly required for oocyte maturation in C-elegans [J].
Detwiler, MR ;
Reuben, M ;
Li, XM ;
Rogers, R ;
Lin, RL .
DEVELOPMENTAL CELL, 2001, 1 (02) :187-199
[7]   Axis specification in animal development [J].
Goldstein, B ;
Freeman, G .
BIOESSAYS, 1997, 19 (02) :105-116
[8]   PAR-1, A GENE REQUIRED FOR ESTABLISHING POLARITY IN C-ELEGANS EMBRYOS, ENCODES A PUTATIVE SER/THR KINASE THAT IS ASYMMETRICALLY DISTRIBUTED [J].
GUO, S ;
KEMPHUES, KJ .
CELL, 1995, 81 (04) :611-620
[9]   Specificity determinants of substrate recognition by the protein kinase DYRK1A [J].
Himpel, S ;
Tegge, W ;
Frank, R ;
Leder, S ;
Joost, HG ;
Becker, W .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (04) :2431-2438
[10]   MECHANISM OF CDK ACTIVATION REVEALED BY THE STRUCTURE OF A CYCLINA-CDK2 COMPLEX [J].
JEFFREY, PD ;
RUSO, AA ;
POLYAK, K ;
GIBBS, E ;
HURWITZ, J ;
MASSAGUE, J ;
PAVLETICH, NP .
NATURE, 1995, 376 (6538) :313-320