Locally finite groups all of whose subgroups are boundedly finite over their cores

被引:11
作者
Cutolo, G
Khukhro, EI
Lennox, JC
Rinauro, S
Smith, H
Wiegold, J
机构
[1] UNIV BASILICATA,DIPARTIMENTO MATEMAT,I-85100 POTENZA,ITALY
[2] BUCKNELL UNIV,DEPT MATH,LEWISBURG,PA 17837
[3] UNIV WALES COLL CARDIFF,SCH MATH,CARDIFF CF2 4YH,S GLAM,WALES
关键词
D O I
10.1112/S0024609397003068
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For n a positive integer, a group G is called core-n if H/H-G has order at most n for every subgroup H of G (where H-G is the normal core of H, the largest normal subgroup of G contained in H). It is proved that a locally finite core-n group G has an abelian subgroup whose index in G is bounded in terms of n.
引用
收藏
页码:563 / 570
页数:8
相关论文
共 10 条
[1]   Groups with all subgroups normal-by-finite [J].
Buckley, JT ;
Lennox, JC ;
Neumann, BH ;
Smith, H ;
Wiegold, J .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1995, 59 :384-398
[2]  
CUTOLO G, IN PRESS P ROY IRISH
[3]  
CUTOLO G, IN PRESS J ALGEBRA
[4]  
Kegel O. H., 1973, LOCALLY FINITE GROUP
[5]   SOME FINITENESS CONDITIONS CONCERNING INTERSECTIONS OF CONJUGATES OF SUBGROUPS [J].
LENNOX, JC ;
LONGOBARDI, P ;
MAJ, M ;
SMITH, H ;
WIEGOLD, J .
GLASGOW MATHEMATICAL JOURNAL, 1995, 37 :327-335
[6]  
LENNOX JC, 1995, P INFINITE GROUPS 19
[7]  
Neumann BH., 1955, Math. Z, V63, P76
[8]  
Olshanskii A., 1989, GEOMETRY DEFINING RE
[9]   Locally graded groups with all subgroups normal-by-finite [J].
Smith, H ;
Wiegold, J .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1996, 60 :222-227
[10]  
WIEGOLD J, 1996, P INT C INF GROUPS R, P295