Two-Dimensional Carbon-Coated Graphene/Metal Oxide Hybrids for Enhanced Lithium Storage

被引:385
作者
Su, Yuezeng [2 ]
Li, Shuang [2 ]
Wu, Dongqing [1 ]
Zhang, Fan [1 ]
Liang, Haiwei [1 ]
Gao, Pengfei [1 ]
Cheng, Chong [1 ]
Feng, Xinliang [1 ,3 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Aeronaut & Astronaut, Shanghai 200240, Peoples R China
[3] Max Planck Inst Polymer Res, D-55128 Mainz, Germany
关键词
lithium-ion battery; metal oxide; 2D nanosheet; graphene; core-shell; PERFORMANCE ANODE MATERIAL; REVERSIBLE CAPACITY; REDUCED GRAPHENE; AMORPHOUS OXIDE; SNO2; NANOWIRE; ION BATTERIES; SANDWICH-LIKE; NANOPARTICLES; NANOSHEETS; COMPOSITE;
D O I
10.1021/nn303091t
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metal oxides (MOs) have been widely investigated as promising high-capacity anode material for lithium ion batteries, but they usually exhibit poor cycling stability and rate performance due to the huge volume change induced by the alloying reaction with lithium. In this article, we present a double protection strategy by fabricating a two-dimensional (2D) core-shell nanostructure to improve the electrochemical performance of metal oxides in lithium storage. The 2D core-shell architecture is constructed by confining the well-defined graphene based metal oxides nanosheets (G@MO) within carbon layers. The resulting 2D carbon-coated graphene/metal oxides nanosheets (G@MO@C) inherit the advantages of graphene, which possesses high electrical conductivity, large aspect ratio, and thin feature. Furthermore, the carbon shells can tackle the deformation of MO nanoparticles while keeping the overall electrode highly conductive and active in lithium storage. As the result, the produced G@MO@C hybrids exhibit outstanding reversible capacity and excellent rate performance for lithium storage (G@SnO2@C, 800 mAh g(-1) at the rate of 200 mA g(-1) after 100 cycles; G@Fe3O4@C, 920 mAh g(-1) at the rate of 200 mA g(-1) after 100 cycles).
引用
收藏
页码:8349 / 8356
页数:8
相关论文
共 41 条
[1]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[2]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[3]   L-Cysteine-Assisted Synthesis of Layered MoS2/Graphene Composites with Excellent Electrochemical Performances for Lithium Ion Batteries [J].
Chang, Kun ;
Chen, Weixiang .
ACS NANO, 2011, 5 (06) :4720-4728
[4]   Self-Assembly and Embedding of Nanoparticles by In Situ Reduced Graphene for Preparation of a 3D Graphene/Nanoparticle Aerogel [J].
Chen, Wufeng ;
Li, Sirong ;
Chen, Chunhua ;
Yan, Lifeng .
ADVANCED MATERIALS, 2011, 23 (47) :5679-+
[5]   One-Dimensional Hierarchical Structures Composed of Novel Metal Oxide Nanosheets on a Carbon Nanotube Backbone and Their Lithium-Storage Properties [J].
Ding, Shujiang ;
Chen, Jun Song ;
Lou, Xiong Wen .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (21) :4120-4125
[6]   Challenges in the development of advanced Li-ion batteries: a review [J].
Etacheri, Vinodkumar ;
Marom, Rotem ;
Elazari, Ran ;
Salitra, Gregory ;
Aurbach, Doron .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3243-3262
[7]   Intrinsic ripples in graphene [J].
Fasolino, A. ;
Los, J. H. ;
Katsnelson, M. I. .
NATURE MATERIALS, 2007, 6 (11) :858-861
[8]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[9]   Electrochemical insertion of lithium ions into disordered carbons derived from reduced graphite fluoride [J].
Giraudet, J ;
Dubois, M ;
Inacio, J ;
Hamwi, A .
CARBON, 2003, 41 (03) :453-463
[10]   In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode [J].
Huang, Jian Yu ;
Zhong, Li ;
Wang, Chong Min ;
Sullivan, John P. ;
Xu, Wu ;
Zhang, Li Qiang ;
Mao, Scott X. ;
Hudak, Nicholas S. ;
Liu, Xiao Hua ;
Subramanian, Arunkumar ;
Fan, Hongyou ;
Qi, Liang ;
Kushima, Akihiro ;
Li, Ju .
SCIENCE, 2010, 330 (6010) :1515-1520