Challenges in the development of advanced Li-ion batteries: a review

被引:5900
作者
Etacheri, Vinodkumar [1 ]
Marom, Rotem [1 ]
Elazari, Ran [1 ]
Salitra, Gregory [1 ]
Aurbach, Doron [1 ]
机构
[1] Bar Ilan Univ, Dept Chem, IL-52900 Ramat Gan, Israel
关键词
IN-SITU FTIR; ELECTRODE MATERIALS; CATHODE MATERIALS; ELECTROCHEMICAL PERFORMANCE; INTERCALATION PROCESSES; POLYMER ELECTROLYTES; THERMAL-STABILITY; LITHIUM SURFACES; PHOSPHO-OLIVINES; ANODE MATERIALS;
D O I
10.1039/c1ee01598b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Li-ion battery technology has become very important in recent years as these batteries show great promise as power sources that can lead us to the electric vehicle (EV) revolution. The development of new materials for Li-ion batteries is the focus of research in prominent groups in the field of materials science throughout the world. Li-ion batteries can be considered to be the most impressive success story of modern electrochemistry in the last two decades. They power most of today's portable devices, and seem to overcome the psychological barriers against the use of such high energy density devices on a larger scale for more demanding applications, such as EV. Since this field is advancing rapidly and attracting an increasing number of researchers, it is important to provide current and timely updates of this constantly changing technology. In this review, we describe the key aspects of Li-ion batteries: the basic science behind their operation, the most relevant components, anodes, cathodes, electrolyte solutions, as well as important future directions for R&D of advanced Li-ion batteries for demanding use, such as EV and load-leveling applications.
引用
收藏
页码:3243 / 3262
页数:20
相关论文
共 150 条
[1]   PRACTICAL RECHARGEABLE LITHIUM BATTERIES [J].
ABRAHAM, KM ;
PASQUARIELLO, DM ;
SCHWARTZ, DA .
JOURNAL OF POWER SOURCES, 1989, 26 (1-2) :247-255
[2]   II. A combined model for determining capacity usage and battery size for hybrid and plug-in hybrid electric vehicles [J].
Albertus, Paul ;
Couts, Jeremy ;
Srinivasan, Venkat ;
Newman, John .
JOURNAL OF POWER SOURCES, 2008, 183 (02) :771-782
[3]   Integrated Materials xLi2MnO3•(1-x) LiMn1/3Ni1/3Co1/3O2 (x=0.3, 0.5, 0.7) Synthesized [J].
Amalraj, Francis ;
Kovacheva, Daniela ;
Talianker, Michael ;
Zeiri, Leila ;
Grinblat, Judith ;
Leifer, Nicole ;
Goobes, Gil ;
Markovsky, Boris ;
Aurbach, Doron .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (10) :A1121-A1130
[4]   The use of in situ techniques in R&D of Li and Mg rechargeable batteries [J].
Amalraj, S. Francis ;
Aurbach, Doron .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2011, 15 (05) :877-890
[5]   Fluoride based electrode materials for advanced energy storage devices [J].
Amatucci, Glenn G. ;
Pereira, Nathalie .
JOURNAL OF FLUORINE CHEMISTRY, 2007, 128 (04) :243-262
[6]  
[Anonymous], 1999, Corporate Environmental Strategy, V6, P258, DOI DOI 10.1016/81066-7938(00)80040-8
[7]   Room temperature lithium polymer batteries based on ionic liquids [J].
Appetecchi, G. B. ;
Kim, G. T. ;
Montanino, M. ;
Alessandrini, F. ;
Passerini, S. .
JOURNAL OF POWER SOURCES, 2011, 196 (16) :6703-6709
[8]   On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries [J].
Aurbach, D ;
Markovsky, B ;
Weissman, I ;
Levi, E ;
Ein-Eli, Y .
ELECTROCHIMICA ACTA, 1999, 45 (1-2) :67-86
[9]   Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems [J].
Aurbach, D ;
Zaban, A ;
Ein-Eli, Y ;
Weissman, I ;
Chusid, O ;
Markovsky, B ;
Levi, M ;
Levi, E ;
Schechter, A ;
Granot, E .
JOURNAL OF POWER SOURCES, 1997, 68 (01) :91-98
[10]   THE STUDY OF LI-GRAPHITE INTERCALATION PROCESSES IN SEVERAL ELECTROLYTE SYSTEMS USING IN-SITU X-RAY-DIFFRACTION [J].
AURBACH, D ;
EINELI, Y .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (06) :1746-1752